import anthropic import base64 import httpx import os import time from mimetypes import guess_type import random # import numpy as np def seed_everything(seed): random.seed(seed) # np.random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) # torch.manual_seed(seed) # torch.cuda.manual_seed(seed) # torch.backends.cudnn.deterministic = True # env.seed(seed) seed_everything(1) def local_image_to_data_url(image_path): mime_type, _ = guess_type(image_path) if mime_type is None: mime_type = 'application/octet-stream' with open(image_path, "rb") as image_file: base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8') return base64_encoded_data client = anthropic.Anthropic( api_key="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", ) # Start test levels = [3,4,5,6,7,8] in_context_example_num = 0 # 0, 1, 2, 4, 8 if in_context_example_num > 0: output_path = "output/output_img_%d/"%(in_context_example_num) input_backup_path = "input/input_backup_img_%d/"%(in_context_example_num) else: output_path = "output/output_img/" input_backup_path = "input/input_backup_img/" os.makedirs(output_path, exist_ok=True) os.makedirs(input_backup_path, exist_ok=True) EXAMPLE_DICT = { 3: [], 4: [], 5: [], 6: [], 7: [], 8: [], } # for level in levels: # for example_id in range(8): # curr_example_pack = {} # curr_example_pack["image_path"] = "../example/level%d/img/%d.png"%(level, example_id) # with open("../example/level%d/answer/%d.txt"%(level, example_id), "r") as f: # curr_example_pack["answer"] = f.read() # curr_example_pack["pure_text"] = "../example/level%d/pure_text/%d.txt"%(level, example_id) # curr_example_pack["table"] = "../example/level%d/table/%d.txt"%(level, example_id) # curr_example_pack["start_image_path"] = "../example/level%d/begin/%d.jpg"%(level, example_id) # curr_example_pack["end_image_path"] = "../example/level%d/end/%d.jpg"%(level, example_id) # example_path = "../example/level%d/"%(level) # curr_example_pack["question1"] = "\n\nPlease generate the moving plan. The beginning state is:" # curr_example_pack["question2"] = "\nThe end state is:" # with open(example_path + "sol_%d.txt"%(example_id), "r") as f: # curr_example_pack["answer"] = f.read() # EXAMPLE_DICT[level].append(curr_example_pack) import ipdb; ipdb.set_trace() for level in levels: os.makedirs(output_path + "level%d"%(level), exist_ok=True) os.makedirs(input_backup_path + "level%d"%(level), exist_ok=True) start_idx = 0 end_idx = 100 runned_term = 0 map_path = "../maps/level%d/img/"%(level) while True: try: curr_id = start_idx + runned_term if curr_id >= end_idx: break prompt_input_1 = ''' In this task, you will analyze a maze to determine if there is a hole in a specific position. The following figure illustrates the appearances of the player, holes, lands, and the goal within the maze. You will need to focus on the appearance of the hole. ''' prompt_input_2 = ''' Here is an example to illustrate how to analyze and answer the question: ''' prompt_input_3 = ''' Example question: Is there a hole in row 3, column 3? In this example: - We check the position in row 3, column 3. - According to the image, it is a land square. It does not contain a hole. - Therefore, you will output " No". Your output should be: " No" or " Yes", depending on whether there is a hole at the specified position. ''' # prompt_examples = [] # image_examples = [] # if in_context_example_num > 0: # prompt_examples.append("## Example:\n") # example_indices = random.sample(range(8), in_context_example_num) # for example_index in example_indices: # this_example = EXAMPLE_DICT[level][example_index] # image_examples.append(local_image_to_data_url(this_example["image_path"])) # prompt_examples.append(this_example["answer"]) prompt_input_4 = "\n\nNow you will analyze the following maze and answer the question: " with open("../maps/level%d/question/%d.txt"%(level, curr_id), "r") as f: prompt_input_5 = f.read() # construct content_input_seq = [] content_input_seq.append({ "type": "text", "text": prompt_input_1, }) content_input_seq.append({ "type": "image", "source": { "type": "base64", "media_type": "image/png", "data": local_image_to_data_url("../prompt-visual-images/system-figure-1.png"), } }) content_input_seq.append({ "type": "text", "text": prompt_input_2, }) content_input_seq.append({ "type": "image", "source": { "type": "base64", "media_type": "image/png", "data": local_image_to_data_url("../prompt-visual-images/system-figure-2.png"), } }) content_input_seq.append({ "type": "text", "text": prompt_input_3, }) content_input_seq.append({ "type": "text", "text": prompt_input_4, }) content_input_seq.append({ "type": "image", "source": { "type": "base64", "media_type": "image/png", "data": local_image_to_data_url(map_path + "%d.png"%(curr_id)), } }) content_input_seq.append({ "type": "text", "text": prompt_input_5, }) response = client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1024, system="You are a maze-solving agent playing a pixelated maze videogame.\nMazes are presented on grid maps, where each tile can be empty land, or contain a player, hole, or goal.", messages=[ { "role": "user", "content": content_input_seq }, ], ) with open(output_path + "level%d/%d.txt"%(level, curr_id), "w") as f: f.write(response.content[0].text) time.sleep(2) runned_term += 1 except: time.sleep(2) pass