File size: 5,973 Bytes
b52c6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Lint as: python3
import json
import logging
import os

import datasets
from detectron2.data.detection_utils import read_image
from detectron2.data.transforms import ResizeTransform, TransformList
from torch import tensor


def load_image(image_path):
    image = read_image(image_path, format="BGR")
    h = image.shape[0]
    w = image.shape[1]
    img_trans = TransformList([ResizeTransform(h=h, w=w, new_h=224, new_w=224)])
    # convert to RGB
    image = tensor(img_trans.apply_image(image).copy()).permute(
        2, 0, 1
    )  # copy to make it writeable
    return image, (w, h)


_URL = "https://github.com/doc-analysis/XFUND/releases/download/v1.0/"

_LANG = ["zh", "de", "es", "fr", "en", "it", "ja", "pt"]
logger = logging.getLogger(__name__)


class XFUNDConfig(datasets.BuilderConfig):
    """BuilderConfig for XFUND."""

    def __init__(self, lang, additional_langs=None, **kwargs):
        """
        Args:
            lang: string, language for the input text
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(**kwargs)
        self.lang = lang
        self.additional_langs = additional_langs


_LABELS = ["header", "question", "answer", "other"]


def _get_box_feature():
    return datasets.Sequence(datasets.Value("int64"))


class XFUND(datasets.GeneratorBasedBuilder):
    """XFUND dataset."""

    BUILDER_CONFIGS = [XFUNDConfig(name=f"xfund.{lang}", lang=lang) for lang in _LANG]

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "uid": datasets.Value("string"),
                    "document": datasets.Sequence(
                        {
                            "id": datasets.Value("int64"),
                            "box": _get_box_feature(),
                            "text": datasets.Value("string"),
                            "label": datasets.ClassLabel(names=_LABELS),
                            "words": datasets.Sequence(
                                {
                                    "box": _get_box_feature(),
                                    "text": datasets.Value("string"),
                                }
                            ),
                            "linking": datasets.Sequence(
                                datasets.Sequence(datasets.Value("int64"))
                            ),
                        }
                    ),
                    "img_meta": {
                        "fname": datasets.Value("string"),
                        "width": datasets.Value("int64"),
                        "height": datasets.Value("int64"),
                        "format": datasets.Value("string"),
                    },
                    # has to be at the root level, crashes otherwise
                    "img_data": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
                },
            ),
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": [
                f"{_URL}{self.config.lang}.train.json",
                f"{_URL}{self.config.lang}.train.zip",
            ],
            "val": [f"{_URL}{self.config.lang}.val.json", f"{_URL}{self.config.lang}.val.zip"],
            # "test": [f"{_URL}{self.config.lang}.test.json", f"{_URL}{self.config.lang}.test.zip"],
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        train_files_for_many_langs = [downloaded_files["train"]]
        val_files_for_many_langs = [downloaded_files["val"]]
        # test_files_for_many_langs = [downloaded_files["test"]]
        if self.config.additional_langs:
            additional_langs = self.config.additional_langs.split("+")
            if "all" in additional_langs:
                additional_langs = [lang for lang in _LANG if lang != self.config.lang]
            for lang in additional_langs:
                urls_to_download = {
                    "train": [f"{_URL}{lang}.train.json", f"{_URL}{lang}.train.zip"]
                }
                additional_downloaded_files = dl_manager.download_and_extract(urls_to_download)
                train_files_for_many_langs.append(additional_downloaded_files["train"])

        logger.info(
            f"Training on {self.config.lang} with additional langs({self.config.additional_langs})"
        )
        logger.info(f"Evaluating on {self.config.lang}")
        logger.info(f"Testing on {self.config.lang}")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_files_for_many_langs}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": val_files_for_many_langs}
            ),
            # datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": test_files_for_many_langs}),
        ]

    def _generate_examples(self, filepaths):
        for filepath in filepaths:
            logger.info("Generating examples from = %s", filepath)
            with open(filepath[0], encoding="utf-8") as f:
                data = json.load(f)

            for doc in data["documents"]:
                # print(json.dumps(doc, indent=2))
                fpath = os.path.join(filepath[1], doc["img"]["fname"])
                image, size = load_image(fpath)
                expected_size = tuple([doc["img"]["width"], doc["img"]["height"]])
                if size != expected_size:
                    raise ValueError(
                        f"image has unexpected size: {size}. expected: {expected_size}"
                    )

                doc["img_meta"] = doc.pop("img")
                doc["img_meta"]["format"] = "RGB"
                doc["img_data"] = image

                yield doc["id"], doc