--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 924830 num_examples: 11514 download_size: 347436 dataset_size: 924830 - config_name: intents features: - name: id dtype: int64 - name: name dtype: string - name: tags sequence: 'null' - name: regexp_full_match sequence: 'null' - name: regexp_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 2266 num_examples: 60 download_size: 3945 dataset_size: 2266 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: intents data_files: - split: intents path: intents/intents-* task_categories: - text-classification language: - ru --- # Russian massive This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset massive_ru = Dataset.from_datasets("AutoIntent/massive_ru") ``` ## Source This dataset is taken from `mteb/amazon_massive_intent` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from datasets import load_dataset def convert_massive(massive_train): intent_names = sorted(massive_train.unique("label")) name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False)) n_classes = len(intent_names) classwise_utterance_records = [[] for _ in range(n_classes)] intents = [ { "id": i, "name": name, } for i, name in enumerate(intent_names) ] for batch in massive_train.iter(batch_size=16, drop_last_batch=False): for txt, name in zip(batch["text"], batch["label"], strict=False): intent_id = name_to_id[name] target_list = classwise_utterance_records[intent_id] target_list.append({"utterance": txt, "label": intent_id}) utterances = [rec for lst in classwise_utterance_records for rec in lst] return Dataset.from_dict({"intents": intents, "train": utterances}) massive = load_dataset("mteb/amazon_massive_intent", "ru") massive_converted = convert_massive(massive["train"]) ```