01Matrix commited on
Commit
a223ee4
Β·
verified Β·
1 Parent(s): 87dafbf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -48
README.md CHANGED
@@ -162,7 +162,7 @@ task_categories:
162
  ---
163
 
164
  ![image.png](./OPI_logo.png)
165
- # Dataset Card for Open Protein Instructions (OPI)
166
 
167
  ## Dataset Update
168
  The previous version of OPI dataset is based on the **release 2022_01** of UniProtKB/Swiss-Prot protein knowledgebase. At current, OPI is updated to contain the latest **release 2023_05**, which can be accessed via the dataset file [OPI_updated_160k.json](./OPI_DATA/OPI_updated_160k.json).
@@ -179,14 +179,18 @@ Reference:
179
  - **Leaderboard:**
180
  - **Point of Contact:**
181
 
182
- ### Dataset Summary
183
 
184
  Open Protein Instructions(OPI) is the initial part of Open Biology Instructions(OBI) project, together with the subsequent Open Molecule Instructions(OMI), Open DNA Instructions(ODI), Open RNA Instructions(ORI) and Open Single-cell Instructions (OSCI). OBI is a project which aims to fully leverage the potential ability of Large Language Models(LLMs), especially the scientific LLMs like Galactica, to facilitate research in AI for Life Science community. While OBI is still in an early stage, we hope to provide a starting point for the community to bridge LLMs and biological domain knowledge.
185
 
186
- ## Dataset Structure
187
 
188
- ### Data Instances
 
189
 
 
 
 
190
  ```
191
  instruction:
192
  What is the EC classification of the input protein sequence based on its biological function?
@@ -200,74 +204,74 @@ input:
200
  output:
201
  2.7.10.2
202
  ```
 
 
 
 
203
 
204
- ### Data Splits
205
- The OPI dataset folder structure is as follows:
206
  ```
207
  ./OPI_DATA/
208
- β”œβ”€β”€ AP
209
- β”‚ β”œβ”€β”€ Function
210
  β”‚ β”‚ β”œβ”€β”€ test
211
- β”‚ β”‚ β”‚ β”œβ”€β”€ CASPSimilarSeq_function_test.jsonl
212
- β”‚ β”‚ β”‚ β”œβ”€β”€ IDFilterSeq_function_test.jsonl
213
- β”‚ β”‚ β”‚ └── UniProtSeq_function_test.jsonl
214
  β”‚ β”‚ └── train
215
- β”‚ β”‚ β”œβ”€β”€ function_description_train.json
216
- β”‚ β”‚ └── function_description_train_0.01.json
217
- β”‚ β”œβ”€β”€ GO
218
  β”‚ β”‚ β”œβ”€β”€ test
219
- β”‚ β”‚ β”‚ β”œβ”€β”€ CASPSimilarSeq_go_test.jsonl
220
- β”‚ β”‚ β”‚ β”œβ”€β”€ IDFilterSeq_go_test.jsonl
221
- β”‚ β”‚ β”‚ └── UniProtSeq_go_test.jsonl
222
  β”‚ β”‚ └── train
223
- β”‚ β”‚ β”œβ”€β”€ go_terms_train.json
224
- β”‚ β”‚ └── go_terms_train_0.01.json
225
- β”‚ └── Keywords
226
  β”‚ β”œβ”€β”€ test
227
- β”‚ β”‚ β”œβ”€β”€ CASPSimilarSeq_keywords_test.jsonl
228
- β”‚ β”‚ β”œβ”€β”€ IDFilterSeq_keywords_test.jsonl
229
- β”‚ β”‚ └── UniProtSeq_keywords_test.jsonl
230
  β”‚ └── train
231
- β”‚ β”œβ”€β”€ keywords_train.json
232
- β”‚ └── keywords_train_0.01.json
233
- β”œβ”€β”€ KM
234
- β”‚ β”œβ”€β”€ gSymbol2Cancer
235
  β”‚ β”‚ β”œβ”€β”€ test
236
- β”‚ β”‚ β”‚ └── gene_symbol_to_cancer_test.jsonl
 
 
237
  β”‚ β”‚ └── train
238
- β”‚ β”‚ └── gene_symbol_to_cancer_train.json
239
- β”‚ β”œβ”€β”€ gName2Cancer
240
  β”‚ β”‚ β”œβ”€β”€ test
241
- β”‚ β”‚ β”‚ └── gene_name_to_cancer_test.jsonl
 
 
242
  β”‚ β”‚ └── train
243
- β”‚ β”‚ └── gene_name_to_cancer_train.json
244
- β”‚ └── gSymbol2Tissue
245
  β”‚ β”œβ”€β”€ test
246
- β”‚ β”‚ └── gene_symbol_to_tissue_test.jsonl
 
 
247
  β”‚ └── train
248
- β”‚ └── gene_symbol_to_tissue_train.json
249
- └── SU
250
- β”œβ”€β”€ EC_number
251
  β”‚ β”œβ”€β”€ test
252
- β”‚ β”‚ β”œβ”€β”€ CLEAN_EC_number_new_test.jsonl
253
- β”‚ β”‚ └── CLEAN_EC_number_price_test.jsonl
254
  β”‚ └── train
255
- β”‚ β”œβ”€β”€ CLEAN_EC_number_train.json
256
- β”œβ”€β”€ Fold_type-Remote
257
  β”‚ β”œβ”€β”€ test
258
- β”‚ β”‚ └── Remote_test.jsonl
259
  β”‚ └── train
260
- β”‚ └── Remote_train.json
261
- └── Subcellular_location
262
  β”œβ”€β”€ test
263
- β”‚ β”œβ”€β”€ location_test.jsonl
264
  └── train
265
- └── location_train.json
266
  ```
267
 
268
- ## Dataset Creation
269
 
270
- The OPI dataset is curated on our own by extracting key information from [Swiss-Prot](https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue&query=%2A) database. The detailed construction pipeline is depicted in the supplementary material of our manuscript which has been submitted to NeurIPS 2023 Datasets and Benchmarks. The following figure shows the general construction process.
271
  ![image.png](./OPI_data.png)
272
 
273
  ## License
 
162
  ---
163
 
164
  ![image.png](./OPI_logo.png)
165
+ # Open Protein Instructions (OPI)
166
 
167
  ## Dataset Update
168
  The previous version of OPI dataset is based on the **release 2022_01** of UniProtKB/Swiss-Prot protein knowledgebase. At current, OPI is updated to contain the latest **release 2023_05**, which can be accessed via the dataset file [OPI_updated_160k.json](./OPI_DATA/OPI_updated_160k.json).
 
179
  - **Leaderboard:**
180
  - **Point of Contact:**
181
 
182
+ ### Dataset Overview
183
 
184
  Open Protein Instructions(OPI) is the initial part of Open Biology Instructions(OBI) project, together with the subsequent Open Molecule Instructions(OMI), Open DNA Instructions(ODI), Open RNA Instructions(ORI) and Open Single-cell Instructions (OSCI). OBI is a project which aims to fully leverage the potential ability of Large Language Models(LLMs), especially the scientific LLMs like Galactica, to facilitate research in AI for Life Science community. While OBI is still in an early stage, we hope to provide a starting point for the community to bridge LLMs and biological domain knowledge.
185
 
186
+ We are excited to announce the release of the OPI dataset, a curated collection of instructions covering 9 tasks for adapting LLMs to protein biology. The dataset is designed to advance LLM-driven research in the field of protein biology. We welcome contributions and enhancements to this dataset from the community.
187
 
188
+ **Accessing the OPI dataset:**
189
+ The OPI dataset is organized into the three subfoldersβ€”AP, KM, and SUβ€”by in the [OPI_DATA](./OPI_DATA/) directory within this repository, where you can find a subset for each specific task as well as the full dataset file: [OPI_full_1.61M_train.json](./OPI_DATA/OPI_full_1.61M_train.json). f you want to merge all or several training data files of the tasks into one single training data file, please do like this:
190
 
191
+ ## Dataset Examples
192
+
193
+ **An example of OPI training data:**
194
  ```
195
  instruction:
196
  What is the EC classification of the input protein sequence based on its biological function?
 
204
  output:
205
  2.7.10.2
206
  ```
207
+ - **An example of OPI testing data:**
208
+ ```
209
+ {"id": "seed_task_0", "name": "EC number of price dataset from CLEAN", "instruction": "Return the EC number of the protein sequence.", "instances": [{"input": "MAIPPYPDFRSAAFLRQHLRATMAFYDPVATDASGGQFHFFLDDGTVYNTHTRHLVSATRFVVTHAMLYRTTGEARYQVGMRHALEFLRTAFLDPATGGYAWLIDWQDGRATVQDTTRHCYGMAFVMLAYARAYEAGVPEARVWLAEAFDTAEQHFWQPAAGLYADEASPDWQLTSYRGQNANMHACEAMISAFRATGERRYIERAEQLAQGICQRQAALSDRTHAPAAEGWVWEHFHADWSVDWDYNRHDRSNIFRPWGYQVGHQTEWAKLLLQLDALLPADWHLPCAQRLFDTAVERGWDAEHGGLYYGMAPDGSICDDGKYHWVQAESMAAAAVLAVRTGDARYWQWYDRIWAYCWAHFVDHEHGAWFRILHRDNRNTTREKSNAGKVDYHNMGACYDVLLWALDAPGFSKESRSAALGRP", "output": "5.3.1.7"}], "is_classification": false}
210
+ ```
211
 
212
+ ## OPI Dataset Folder Structure
 
213
  ```
214
  ./OPI_DATA/
215
+ └── SU
216
+ β”‚ β”œβ”€β”€ EC_number
217
  β”‚ β”‚ β”œβ”€β”€ test
218
+ β”‚ β”‚ β”‚ β”œβ”€β”€ CLEAN_EC_number_new_test.jsonl
219
+ β”‚ β”‚ β”‚ └── CLEAN_EC_number_price_test.jsonl
 
220
  β”‚ β”‚ └── train
221
+ β”‚ β”‚ β”œβ”€β”€ CLEAN_EC_number_train.json
222
+ β”‚ β”œβ”€β”€ Fold_type
 
223
  β”‚ β”‚ β”œβ”€β”€ test
224
+ β”‚ β”‚ β”‚ └── fold_type_test.jsonl
 
 
225
  β”‚ β”‚ └── train
226
+ β”‚ β”‚ └── fold_type_train.json
227
+ β”‚ └── Subcellular_localization
 
228
  β”‚ β”œβ”€β”€ test
229
+ β”‚ β”‚ β”œβ”€β”€ subcell_loc_test.jsonl
 
 
230
  β”‚ └── train
231
+ └── subcell_loc_train.json
232
+ β”œβ”€β”€ AP
233
+ β”‚ └── Keywords
 
234
  β”‚ β”‚ β”œβ”€β”€ test
235
+ β”‚ β”‚ β”‚ β”œβ”€β”€ CASPSimilarSeq_keywords_test.jsonl
236
+ β”‚ β”‚ β”‚ β”œβ”€β”€ IDFilterSeq_keywords_test.jsonl
237
+ β”‚ β”‚ β”‚ └── UniProtSeq_keywords_test.jsonl
238
  β”‚ β”‚ └── train
239
+ β”‚ β”‚ β”œβ”€β”€ keywords_train.json
240
+ β”‚ β”œβ”€β”€ GO
241
  β”‚ β”‚ β”œβ”€β”€ test
242
+ β”‚ β”‚ β”‚ β”œβ”€β”€ CASPSimilarSeq_go_terms_test.jsonl
243
+ β”‚ β”‚ β”‚ β”œβ”€β”€ IDFilterSeq_go_terms_test.jsonl
244
+ β”‚ β”‚ β”‚ └── UniProtSeq_go_terms_test.jsonl
245
  β”‚ β”‚ └── train
246
+ β”‚ β”‚ β”œβ”€β”€ go_terms_train.json
247
+ β”‚ β”œβ”€β”€ Function
248
  β”‚ β”œβ”€β”€ test
249
+ β”‚ β”‚ β”œβ”€β”€ CASPSimilarSeq_function_test.jsonl
250
+ β”‚ β”‚ β”œβ”€β”€ IDFilterSeq_function_test.jsonl
251
+ β”‚ β”‚ └── UniProtSeq_function_test.jsonl
252
  β”‚ └── train
253
+ β”‚ β”œβ”€β”€ function_train.json
254
+ β”œβ”€β”€ KM
255
+ └── gSymbol2Tissue
256
  β”‚ β”œβ”€β”€ test
257
+ β”‚ β”‚ └── gene_symbol_to_tissue_test.jsonl
 
258
  β”‚ └── train
259
+ β”‚ └── gene_symbol_to_tissue_train.json
260
+ β”œβ”€β”€ gSymbol2Cancer
261
  β”‚ β”œβ”€β”€ test
262
+ β”‚ β”‚ └── gene_symbol_to_cancer_test.jsonl
263
  β”‚ └── train
264
+ β”‚ └── gene_symbol_to_cancer_train.json
265
+ β”œβ”€β”€ gName2Cancer
266
  β”œβ”€β”€ test
267
+ β”‚ └── gene_name_to_cancer_test.jsonl
268
  └── train
269
+ └── gene_name_to_cancer_train.json
270
  ```
271
 
272
+ ## OPI Dataset Construction Pipeline
273
 
274
+ The OPI dataset is curated on our own by extracting key information from [Swiss-Prot](https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue&query=%2A) database. The following figure shows the general construction process.
275
  ![image.png](./OPI_data.png)
276
 
277
  ## License