Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
code
Size:
10K<n<100K
ArXiv:
Tags:
code
License:
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""APPS dataset.""" | |
import json | |
import datasets | |
_REPO_NAME = "BAAI/TACO" | |
_CITATION = """ | |
""" | |
_DESCRIPTION = """ | |
TACO is a benchmark for Python code generation, it includes 25443 problems and 1000 problems for train and test splits. | |
""" | |
_HOMEPAGE = "https://github.com/FlagOpen/TACO" | |
_DIFFICULTY = ["EASY", "MEDIUM", "MEDIUM_HARD", "HARD", "VERY_HARD"] | |
_DIFFICULTY_CONFIGS = ["ALL"] + _DIFFICULTY | |
_SKILL = ['Data structures', 'Sorting', 'Range queries', 'Complete search', 'Amortized analysis', 'Dynamic programming', 'Bit manipulation', 'Greedy algorithms'] | |
_SKILL_CONFIGS = ["ALL"] + _SKILL | |
_URLS = { | |
"train": ['train/data-00000-of-00009.arrow', 'train/data-00001-of-00009.arrow', 'train/data-00002-of-00009.arrow', 'train/data-00003-of-00009.arrow', 'train/data-00004-of-00009.arrow', 'train/data-00005-of-00009.arrow', 'train/data-00006-of-00009.arrow', 'train/data-00007-of-00009.arrow', 'train/data-00008-of-00009.arrow'], | |
"test": ['test/data-00000-of-00001.arrow'], | |
} | |
class TACOConfig(datasets.BuilderConfig): | |
"""BuilderConfig for the TACO dataset.""" | |
def __init__(self, *args, difficulties=["ALL"], skills=["ALL"], **kwargs): | |
"""BuilderConfig for the APPS Code dataset. | |
Args: | |
difficulties (:obj:`List[str]`): List of problem difficulty levels to load. | |
skills (:obj:`List[str]`): List of algorithm skills of problems to load. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
if "ALL" in difficulties: | |
assert len(difficulties) == 1 | |
self.filter_difficulties = False | |
else: | |
self.filter_difficulties = True | |
if "ALL" in skills: | |
assert len(skills) == 1 | |
self.filter_skills = False | |
else: | |
self.filter_skills = True | |
if self.filter_difficulties: | |
subset_name = '+'.join(sorted(difficulties)) | |
assert not self.filter_skills, "Not supported to filter difficulties and skills together." | |
elif self.filter_skills: | |
subset_name = '+'.join(sorted(skills)) | |
else: | |
subset_name = 'ALL' | |
super().__init__( | |
*args, | |
name=subset_name, | |
**kwargs, | |
) | |
self.subsets = {"difficulties": difficulties, "skills": skills} | |
class TACO(datasets.GeneratorBasedBuilder): | |
"""TACO dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIG_CLASS = TACOConfig | |
BUILDER_CONFIGS = [ | |
TACOConfig(difficulties=[level]) for level in _DIFFICULTY_CONFIGS | |
] + [ | |
TACOConfig(skills=[skill]) for skill in _SKILL_CONFIGS if skill!='ALL' | |
] | |
DEFAULT_CONFIG_NAME = "ALL" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features({ | |
'question': datasets.Value(dtype='string', id=None), | |
'solutions': datasets.Value(dtype='string', id=None), | |
'starter_code': datasets.Value(dtype='string', id=None), | |
'input_output': datasets.Value(dtype='string', id=None), | |
'difficulty': datasets.Value(dtype='string', id=None), | |
'raw_tags': datasets.Value(dtype='string', id=None), | |
'name': datasets.Value(dtype='string', id=None), | |
'source': datasets.Value(dtype='string', id=None), | |
'tags': datasets.Value(dtype='string', id=None), | |
'skill_types': datasets.Value(dtype='string', id=None), | |
'url': datasets.Value(dtype='string', id=None), | |
'Expected Auxiliary Space': datasets.Value(dtype='string', id=None), | |
'time_limit': datasets.Value(dtype='string', id=None), | |
'date': datasets.Value(dtype='string', id=None), | |
'picture_num': datasets.Value(dtype='string', id=None), | |
'memory_limit': datasets.Value(dtype='string', id=None), | |
'Expected Time Complexity': datasets.Value(dtype='string', id=None), | |
}), | |
supervised_keys=None, | |
citation=_CITATION, | |
homepage=_HOMEPAGE, | |
license="MIT License", | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = _URLS | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
key = 0 | |
dataset = datasets.concatenate_datasets([datasets.Dataset.from_file(file) for file in filepath]) | |
for idx, data in enumerate(dataset): | |
difficulty = data['difficulty'] | |
skills = eval(data['skill_types']) | |
if self.config.filter_difficulties and not difficulty in self.config.subsets['difficulties']: | |
continue | |
if self.config.filter_skills: | |
valid_skills = self.config.subsets['skills'] | |
if not bool(set(valid_skills) & set(skills)): | |
continue | |
yield key, {k:v for k, v in data.items() if k!='eval_topic'} | |
key += 1 |