Datasets:
File size: 3,126 Bytes
8e52d40 7437e4c 8e52d40 7437e4c 8e52d40 7437e4c 8e52d40 908c046 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: text-only
data_files:
- split: train
path: text-only/train-*
- split: validation
path: text-only/validation-*
- split: test
path: text-only/test-*
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 15368746858.779654
num_examples: 5673373
- name: validation
num_bytes: 404439922.64724064
num_examples: 149299
- name: test
num_bytes: 404442631.57310516
num_examples: 149300
download_size: 9703633440
dataset_size: 16177629413.0
- config_name: text-only
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 14834731398.280304
num_examples: 5673373
- name: validation
num_bytes: 390386911.46022856
num_examples: 149299
- name: test
num_bytes: 390389526.2594667
num_examples: 149300
download_size: 9374463601
dataset_size: 15615507835.999998
---
# Dataset Card for "wikipedia-deduped"
# wikipedia - 20230901.en - deduped
> purpose: train with less data while maintaining (most) of the quality
This is really more of a "high quality diverse sample" rather than _"we are trying to remove literal duplicate documents"_. Source dataset: [graelo/wikipedia](https://huggingface.co/datasets/graelo/wikipedia).
## default config
command:
```sh
python -m text_dedup.minhash \
--path $ds_name \
--name $dataset_config \
--split $data_split \
--cache_dir "./cache" \
--output $out_dir \
--column $text_column \
--ngram 4 --threshold 0.6 \
--hash_func xxh3 --hash_bits 16 --num_perm 64 \
--batch_size 10000
```
dedup:
```sh
Fingerprinting... (num_proc=40): 100% 6705754/6705754 [06:57<00:00, 16063.27 examples/s]
Iterating MinHashes...: 100% 671/671 [04:13<00:00, 2.65it/s]
Clustering...: 100% 10/10 [00:21<00:00, 2.18s/it]
Finding clusters... (num_proc=40): 100% 6705754/6705754 [06:38<00:00, 16839.42 examples/s]
Filtering clusters... (num_proc=40): 100% 6705754/6705754 [02:25<00:00, 46058.39 examples/s]
Saving the dataset (39/39 shards): 100% 5971972/5971972 [03:47<00:00, 26266.10 examples/s]
[10/23/23 02:29:41] INFO Loading : 78.82s
```
result:
```python
DatasetDict({
train: Dataset({
features: ['id', 'url', 'title', 'text'],
num_rows: 5673373
})
validation: Dataset({
features: ['id', 'url', 'title', 'text'],
num_rows: 149299
})
test: Dataset({
features: ['id', 'url', 'title', 'text'],
num_rows: 149300
})
})
```
### text-only
This is the same thing but with all columns except for 'text' removed.
```python
from datasets import load_dataset
# If the dataset is gated/private, make sure you have run huggingface-cli login
config_name = "text-only"
dataset = load_dataset("BEE-spoke-data/wikipedia-deduped", config_name)
``` |