File size: 7,447 Bytes
713f2a1 519cf95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
dataset_info:
features:
- name: id
dtype: uint64
- name: s2orc_id
dtype: uint64
- name: mag_id
dtype: uint64
- name: doi
dtype: string
- name: title
dtype: string
- name: abstract
list:
list:
- name: title_path
list: string
- name: text
dtype: string
- name: citations
list:
- name: index
dtype: uint16
- name: start
dtype: uint32
- name: end
dtype: uint32
- name: references
list:
- name: index
dtype: uint16
- name: start
dtype: uint32
- name: end
dtype: uint32
- name: related_work
dtype: string
- name: hierarchy
dtype: string
- name: authors
list: string
- name: year
dtype: uint16
- name: fields_of_study
list: string
- name: referenced
list:
- name: id
dtype: uint64
- name: s2orc_id
dtype: uint64
- name: mag_id
dtype: uint64
- name: doi
dtype: string
- name: title
dtype: string
- name: hierarchy
dtype: string
- name: authors
list: string
- name: year
dtype: uint16
- name: fields_of_study
list: string
- name: citations
list: uint64
- name: bibliography
list:
- name: id
dtype: uint64
- name: title
dtype: string
- name: year
dtype: uint16
- name: authors
list: string
- name: non_plaintext_content
list:
- name: type
dtype: string
- name: description
dtype: string
- name: bibliography
list:
- name: id
dtype: uint64
- name: title
dtype: string
- name: year
dtype: uint16
- name: authors
list: string
- name: non_plaintext_content
list:
- name: type
dtype: string
- name: description
dtype: string
splits:
- name: train
num_bytes: 39235598318
num_examples: 91445
- name: validation
num_bytes: 581643389
num_examples: 1127
- name: test
num_bytes: 965353630
num_examples: 1878
download_size: 15174246190
dataset_size: 40782595337
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# OARelatedWork
OARelatedWork is a large-scale multi-document summarization dataset for related work generation containing whole related work sections and full-texts of cited papers. The dataset includes 94 450 papers and 5 824 689 unique referenced papers.
| Split | Samples |
|------------------------|---------|
| Train | 91,445|
| Validation | 1,127|
| Test | 1,878|
## Fields
* **id** - id from our corpus
* **s2orc_id** - SemanticScholar id
* **mag_id** - Microsoft Academic Graph id
* **DOI** - Might be DOI for another version of document than the one used for processing.
* **title** - title of publication
* **abstract** - list of paragraphs in an abstract, every paragraph is a list of sentences
* **related_work** - The target related work section. The format differs according to used configuration.
* **hierarchy** - Document body, but the abstract and related work section. The format differs according to used configuration.
* **authors** - authors of publication
* **year** - year of publication
* **fields_of_study** - list of fields of study
* **referenced** - List of referenced document. Each referenced document has the same fields, but the abstract, related_work, and referenced field are missing. All references have the abstract section as a first section in hierarchy.
* **bibliography** - document bibliography
* **non_plaintext_content** - tables and figures
## Structure
We provide multiple dataset configurations to make working with this dataset as simple as possible. Also, by the time this dataset is released, it is not possible to use hierarchical structures, which we use to represent document content. Thus, we used several workarounds, such as flattening the hierarchy or using a JSON representation of hierarchy.
We divide a document content into sections, subsections, paragraphs, and sentences. Not all documents have full text and subsections.
### Flattened hierarchy
The hierarchy is flattened on section level. meaning that it is a list of (sub)sections. Each(sub)section is represented by list of titles on tree path to given section and list of paragraphs in given (sub)section. Each paragraph is represented as a list of sentences. Every sentence also contains metadata such as citation spans.
### Configurations
* **oa_related_work**
uses JSON format to represent hierarchy
* **abstracts**
provides just abstracts of cited papers, hierarchy of target paper is flattened
* **flattened_sections**
hierarchy is flattened, see the Flattened hierarchy section [above](#flattened-hierarchy)
* **greedy oracle based configurations**
These configurations provide filtered content using greedy oracle. Since the greedy oracle is a cheating baseline, use these with care.
* **greedy_oracle_sentences**
Each referenced document is represented by sentences that are in greedy extractive oracle summary. It is using same format as flattened_sections.
* **greedy_oracle_paragraphs**
Each referenced document is represented by paragraphs that contain sentences that are in greedy extractive oracle summary. It is using same format as flattened_sections.
* **greedy_oracle_per_input_doc_sentences**
Each referenced document is represented by sentences that are in greedy extractive oracle summary done on each document separately. It is using same format as flattened_sections.
* **greedy_oracle_per_input_doc_paragraphs**
Each referenced document is represented by paragraphs that contain sentences that are in greedy extractive oracle summary done on each document separately. It is using same format as flattened_sections.
* **abstracts_with_greedy_oracle_target_sentences**
Same as abstracts, but target is greedy oracle summary of target document. Target document is the one for which the related work is generated for.
## I don't want to use Hugging Face loader
Because the processing (cache creation) by Hugging Face loader is slow, we also provide our custom loader that is available at [https://github.com/KNOT-FIT-BUT/OAPapersLoader](https://github.com/KNOT-FIT-BUT/OAPapersLoader).
## TUI Viewer
We provide a TUI viewer with the dataset ([https://github.com/KNOT-FIT-BUT/OAPapersViewer](https://github.com/KNOT-FIT-BUT/OAPapersViewer)), as it is difficult to navigate data of this kind, especially when one wants to investigate the content of cited papers.
![TUI Viewer](tui_viewer.png)
## Sources
The dataset contains open access papers obtained from **CORE** and **SemanticScholar** corpora. These corpora contain third party content and materials, such as open access works from publicly available sources. In addition to the licenses of those organizations (ODC-By, CC BY-NC), any underlying Third Party Content may be subject to separate license terms by the respective third party owner. We made the best effort to provide identifiers (title, authors, year, DOI, or SemanticScholar ID) of collected papers to allow the user of this dataset to check the license.
|