BearSubj13 commited on
Commit
8fe05a9
1 Parent(s): b6fc03c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -5
README.md CHANGED
@@ -1,7 +1,3 @@
1
- configs:
2
- - config_name: data
3
- data_files: main_normal.7z
4
- sep: "\t"
5
  ---
6
  license: mit
7
  task_categories:
@@ -30,7 +26,7 @@ size_categories:
30
  The dataset containes invasive coronary angiograms for the coronary dominance classification task, an essential aspect in assessing the severity of coronary artery disease.
31
  The dataset holds 1,574 studies, including X-ray multi-view videos from two different interventional angiography systems.
32
  Each study has the following tags: bad quality, artifact, high uncertainty, and occlusion. Those tags help to classify dominance classification more accurately and allow to utilize the dataset for uncertainty estimation and outlier detection.
33
- ![Dataset scheme](https://huggingface.co/datasets/BearSubj13/CoronaryDominance/blob/main/dataset_scheme.png "Dataset scheme")
34
 
35
  More information about coronary dominance classification using neural networks in https://doi.org/10.48550/arXiv.2309.06958.
36
 
@@ -39,6 +35,7 @@ Some angiographic studies from the dataset are from CardioSYNTAX dataset of coro
39
 
40
  CITATION
41
  Please cite:
 
42
  @misc{ponomarchuk2024endtoendsyntaxscoreprediction,
43
  title={End-to-end SYNTAX score prediction: benchmark and methods},
44
  author={Alexander Ponomarchuk and Ivan Kruzhilov and Galina Zubkova and Artem Shadrin and Ruslan Utegenov and Ivan Bessonov and Pavel Blinov},
@@ -48,3 +45,4 @@ Please cite:
48
  primaryClass={cs.CV},
49
  url={https://arxiv.org/abs/2407.19894},
50
  }
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  task_categories:
 
26
  The dataset containes invasive coronary angiograms for the coronary dominance classification task, an essential aspect in assessing the severity of coronary artery disease.
27
  The dataset holds 1,574 studies, including X-ray multi-view videos from two different interventional angiography systems.
28
  Each study has the following tags: bad quality, artifact, high uncertainty, and occlusion. Those tags help to classify dominance classification more accurately and allow to utilize the dataset for uncertainty estimation and outlier detection.
29
+ ![Dataset scheme](dataset_scheme.png "Dataset scheme")
30
 
31
  More information about coronary dominance classification using neural networks in https://doi.org/10.48550/arXiv.2309.06958.
32
 
 
35
 
36
  CITATION
37
  Please cite:
38
+ ```
39
  @misc{ponomarchuk2024endtoendsyntaxscoreprediction,
40
  title={End-to-end SYNTAX score prediction: benchmark and methods},
41
  author={Alexander Ponomarchuk and Ivan Kruzhilov and Galina Zubkova and Artem Shadrin and Ruslan Utegenov and Ivan Bessonov and Pavel Blinov},
 
45
  primaryClass={cs.CV},
46
  url={https://arxiv.org/abs/2407.19894},
47
  }
48
+ ```