|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .eva_clip_processors import EvaClipImageTrainProcessor
|
|
from .eva_vit import EVAEncoderWrapper
|
|
from .factory import list_models, add_model_config, get_model_config
|
|
|
|
from llava.utils import rank0_print
|
|
|
|
|
|
class EvaClipVisionTower(nn.Module):
|
|
def __init__(self, vision_tower, args, delay_load=False):
|
|
super().__init__()
|
|
|
|
self.is_loaded = False
|
|
self.vision_tower_name = vision_tower
|
|
self.vision_tower_pretrained = args.vision_tower_pretrained
|
|
self.config = get_model_config(vision_tower)
|
|
|
|
if not delay_load:
|
|
rank0_print(f"Loading EVA ViT: {self.vision_tower_name}")
|
|
self.load_model()
|
|
elif getattr(args, "unfreeze_mm_vision_tower", False):
|
|
|
|
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
|
|
self.load_model()
|
|
elif hasattr(args, "mm_tunable_parts") and "mm_vision_tower" in args.mm_tunable_parts:
|
|
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
|
|
self.load_model()
|
|
else:
|
|
self.cfg_only = self.config
|
|
|
|
def load_model(self, device_map=None):
|
|
rank0_print(f"Pretrained: {self.vision_tower_pretrained}")
|
|
self.image_processor = EvaClipImageTrainProcessor(self.config["vision_cfg"]["image_size"])
|
|
self.vision_tower = EVAEncoderWrapper(self.vision_tower_pretrained, self.config)
|
|
rank0_print(f"Loaded image processor: {self.image_processor}")
|
|
self.vision_tower.requires_grad_(False)
|
|
self.is_loaded = True
|
|
|
|
def forward(self, images):
|
|
if type(images) is list:
|
|
image_features = []
|
|
for image in images:
|
|
image_feature = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0)).to(image.dtype)
|
|
image_features.append(image_feature)
|
|
else:
|
|
image_features = self.vision_tower(images.to(device=self.device, dtype=self.dtype)).to(images.dtype)
|
|
|
|
return image_features
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.vision_tower.dtype
|
|
|
|
@property
|
|
def device(self):
|
|
return self.vision_tower.device
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.config["vision_cfg"]["width"]
|
|
|
|
@property
|
|
def num_patches(self):
|
|
return (self.config["vision_cfg"]["image_size"] // self.config["vision_cfg"]["patch_size"]) ** 2
|
|
|
|
@property
|
|
def num_patches_per_side(self):
|
|
return self.config["vision_cfg"]["image_size"] // self.config["vision_cfg"]["patch_size"]
|
|
|
|
@property
|
|
def image_size(self):
|
|
return self.config["vision_cfg"]["image_size"]
|
|
|