Datasets:
Upload 2 files
Browse filesThe script to generate it for future updates and the current version of the file
- .gitattributes +1 -0
- NewsWebScrape.txt +3 -0
- onionNewsWebScrape.py +183 -0
.gitattributes
CHANGED
@@ -52,3 +52,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
55 |
+
NewsWebScrape.txt filter=lfs diff=lfs merge=lfs -text
|
NewsWebScrape.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09d95b206e5b07da5e3c51fb3df0b7c44138966477433c55f114565b7f57149c
|
3 |
+
size 23450124
|
onionNewsWebScrape.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bs4 import BeautifulSoup
|
2 |
+
import requests
|
3 |
+
from typing import Tuple, List
|
4 |
+
from tqdm import tqdm
|
5 |
+
import itertools
|
6 |
+
from multiprocessing import Pool
|
7 |
+
|
8 |
+
monthLinkClass = "sc-zpw6hx-0"
|
9 |
+
articleLinkClass = "sc-1w8kdgf-0"
|
10 |
+
newsHeadClass = "sc-1efpnfq-0"
|
11 |
+
newsBodyClass = "sc-77igqf-0"
|
12 |
+
videoClass = "lhhce6-0"
|
13 |
+
|
14 |
+
url = "https://www.theonion.com"
|
15 |
+
|
16 |
+
|
17 |
+
# Function to get all links from a page with _url of class _class
|
18 |
+
def get_links(_url: str, _class: str) -> List[str]:
|
19 |
+
"""
|
20 |
+
This function takes in a URL string and a class string and returns a list
|
21 |
+
of all links from a page with that URL and class.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
_url (str): A string representing the URL of the page to scrape.
|
25 |
+
_class (str): A string representing the class of the div containing the links.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
List[str]: A list of strings representing the URLs of the links found.
|
29 |
+
"""
|
30 |
+
# Make a request to the given URL
|
31 |
+
page = requests.get(_url) # This might throw an exception if something goes wrong.
|
32 |
+
|
33 |
+
# Create a BeautifulSoup object to parse the HTML content of the page
|
34 |
+
soup = BeautifulSoup(page.text, 'html.parser')
|
35 |
+
|
36 |
+
# Find the div with the given class (using a lambda function to match partial matches)
|
37 |
+
try:
|
38 |
+
link_div = soup.find_all('div', attrs={'class': lambda e: e.startswith(_class) if e else False})[0]
|
39 |
+
except IndexError:
|
40 |
+
raise IndexError(f"Error: {_url}, with {_class}")
|
41 |
+
|
42 |
+
# Find all the links within the div and extract their URLs
|
43 |
+
links = link_div.findAll('a')
|
44 |
+
links = [link.get('href') for link in links]
|
45 |
+
|
46 |
+
# Return the list of URLs found
|
47 |
+
return links
|
48 |
+
|
49 |
+
|
50 |
+
def extractText(_url: str, _done: bool = True) -> Tuple[str, str]:
|
51 |
+
"""
|
52 |
+
This function takes in a URL string and a boolean flag (default=True) and returns a tuple
|
53 |
+
of two strings: the first is the text of the page's H1 heading with class 'newsHeadClass',
|
54 |
+
and the second is the text of the page's first paragraph with class 'newsBodyClass'.
|
55 |
+
|
56 |
+
If the function encounters an SSLError or ConnectionError, it will attempt to retry the
|
57 |
+
request with the _done flag set to False (to prevent infinite recursion), and if this also
|
58 |
+
fails, it will return an empty tuple of strings.
|
59 |
+
|
60 |
+
If the page does not have an H1 heading or first paragraph with the expected class, the
|
61 |
+
function will return an empty tuple of strings.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
_url (str): A string representing the URL of the page to scrape.
|
65 |
+
_done (bool): A boolean flag indicating whether the function has already attempted
|
66 |
+
to retry the request (default=True).
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
Tuple[str, str]: A tuple of two strings representing the text of the H1 heading and
|
70 |
+
first paragraph with the expected classes (or empty strings if not found).
|
71 |
+
"""
|
72 |
+
try:
|
73 |
+
# Make a request to the given URL
|
74 |
+
page = requests.get(_url) # This might throw an exception if something goes wrong.
|
75 |
+
except (requests.exceptions.SSLError, requests.exceptions.ConnectionError):
|
76 |
+
# If the request fails due to an SSL error or connection error, and we haven't already
|
77 |
+
# retried the request, try again with the _done flag set to False.
|
78 |
+
if _done:
|
79 |
+
return extractText(_url, _done=False)
|
80 |
+
else:
|
81 |
+
# If we've already retried the request, and it still failed, return an empty tuple of strings.
|
82 |
+
return "", ""
|
83 |
+
|
84 |
+
# Create a BeautifulSoup object to parse the HTML content of the page
|
85 |
+
soup = BeautifulSoup(page.text, 'html.parser')
|
86 |
+
|
87 |
+
try:
|
88 |
+
# Find the H1 heading with the expected class
|
89 |
+
head = soup.find_all('h1', attrs={'class': lambda _e: _e.startswith(newsHeadClass) if _e else False})[0].text
|
90 |
+
|
91 |
+
# Find the first paragraph with the expected class
|
92 |
+
body = soup.find_all('p', attrs={'class': lambda _e: _e.startswith(newsBodyClass) if _e else False})[0].text
|
93 |
+
|
94 |
+
# If the H1 heading is the same as the body, assume we haven't found the expected elements
|
95 |
+
if head == body:
|
96 |
+
return "", ""
|
97 |
+
else:
|
98 |
+
# Return the text of the H1 heading and first paragraph
|
99 |
+
return head, body
|
100 |
+
|
101 |
+
except IndexError as e:
|
102 |
+
# If we couldn't find the expected elements, check if there is a video on the page
|
103 |
+
a = soup.find_all('div', attrs={'class': lambda _e: _e.startswith(videoClass) if _e else False})
|
104 |
+
if not a:
|
105 |
+
# If there is no video, return an empty tuple of strings
|
106 |
+
return "", ""
|
107 |
+
# If there is a video, print an error message and raise the IndexError
|
108 |
+
print(f"Error: {_url}")
|
109 |
+
raise e
|
110 |
+
|
111 |
+
|
112 |
+
def batched_extractText(_urls: List[str], _p: Pool) -> List[str]:
|
113 |
+
"""
|
114 |
+
This function takes in a list of URL strings and a multiprocessing Pool object, and returns
|
115 |
+
a list of strings representing the text of the H1 heading and first paragraph for each page.
|
116 |
+
|
117 |
+
The function uses the multiprocessing Pool object to parallelize the extraction of text from
|
118 |
+
the pages, and returns the results as a list of strings.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
_urls (List[str]): A list of strings representing the URLs of the pages to scrape.
|
122 |
+
_p (Pool): A multiprocessing Pool object used to parallelize the extraction of text.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
List[str]: A list of strings representing the text of the H1 heading and first paragraph
|
126 |
+
for each page.
|
127 |
+
"""
|
128 |
+
# Use the map_async method of the multiprocessing Pool object to parallelize the extraction
|
129 |
+
# of text from the pages.
|
130 |
+
results = _p.map_async(extractText, _urls).get()
|
131 |
+
|
132 |
+
# Return the results as a list of strings.
|
133 |
+
return results
|
134 |
+
|
135 |
+
|
136 |
+
def main() -> None:
|
137 |
+
"""
|
138 |
+
Scrape news article titles and bodies from The Onion website and save them to a file.
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
None
|
142 |
+
|
143 |
+
"""
|
144 |
+
# Get the links to the monthly sitemaps from the main page, and print some information about them.
|
145 |
+
monthLinks = get_links(url + "/sitemap", monthLinkClass)
|
146 |
+
print(f"{len(monthLinks)} months have been found.")
|
147 |
+
print(f"Oldest is {monthLinks[-1].replace('/sitemap/', '')}")
|
148 |
+
print(f"and newest is {monthLinks[0].replace('/sitemap/', '')}")
|
149 |
+
|
150 |
+
# Construct the full URLs for the monthly sitemaps.
|
151 |
+
monthLinks = [url + link for link in monthLinks]
|
152 |
+
|
153 |
+
# Get the links to the individual articles from the monthly sitemaps, and print some information
|
154 |
+
# about them.
|
155 |
+
articleLinks = [get_links(monthLink, articleLinkClass) for monthLink in tqdm(monthLinks, desc="Months")]
|
156 |
+
articleLinks = list(itertools.chain(*articleLinks))
|
157 |
+
print(f"{len(articleLinks)} articles have been found.")
|
158 |
+
|
159 |
+
# Extract the text of the H1 heading and first paragraph for each article, using multiprocessing
|
160 |
+
# to speed up the process.
|
161 |
+
text = []
|
162 |
+
batch_size = 60
|
163 |
+
batch_counter = tqdm(range(0, len(articleLinks), batch_size), total=len(articleLinks), desc="Articles")
|
164 |
+
with Pool(batch_size) as p:
|
165 |
+
for x in batch_counter:
|
166 |
+
text += batched_extractText(articleLinks[x:x + batch_size], p)
|
167 |
+
batch_counter.update(batch_size)
|
168 |
+
|
169 |
+
# Filter out any articles that didn't have both a non-empty heading and a non-empty body text.
|
170 |
+
text = [x for x in text if x != ("", "")]
|
171 |
+
|
172 |
+
# Write the text of each article to a file.
|
173 |
+
with open("onion/NewsWebScrape.txt", mode="w", encoding="utf-8") as f:
|
174 |
+
for article in text:
|
175 |
+
if article:
|
176 |
+
f.write(f"{article[0]} #~# {article[1]}\n")
|
177 |
+
|
178 |
+
# Print some information about the number of articles found and written to file.
|
179 |
+
print(f"{len(articleLinks)} articles where found, and {len(text)} articles where written to file.")
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
main()
|