bourdoiscatie commited on
Commit
3470274
·
1 Parent(s): c742d96

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -7
README.md CHANGED
@@ -4,19 +4,29 @@ language:
4
  license:
5
  - cc-by-nc-4.0
6
  size_categories:
7
- - 10K<n<100K
8
  task_categories:
9
  - summarization
10
  tags:
11
  - textual-simplification
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  # bisect_fr_prompt_textual_simplification
15
  ## Summary
16
 
17
- **bisect_fr_prompt_textual_simplification** is a subset of the [**Dataset of French Prompts (DFP)**]().
18
- It contains **X** rows that can be used for a textual simplification task.
19
- The original data (without prompts) comes from the dataset [BiSECT](https://huggingface.co/datasets/GEM/BiSECT) by Kim et al. where only the French part has been kept.
20
  A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
21
 
22
 
@@ -57,9 +67,9 @@ targets = bisect['train'][i]['target'].replace(' . ','. ').replace(' .','. ').re
57
 
58
 
59
  # Splits
60
- - train with X samples
61
- - dev with Y samples
62
- - test with Z samples
63
 
64
 
65
  # How to use?
@@ -82,3 +92,6 @@ dataset = load_dataset("CATIE-AQ/bisect_fr_prompt_textual_simplification")
82
  ## This Dataset
83
 
84
 
 
 
 
 
4
  license:
5
  - cc-by-nc-4.0
6
  size_categories:
7
+ - 1M<n<10M
8
  task_categories:
9
  - summarization
10
  tags:
11
  - textual-simplification
12
+ - DFP
13
+ - french prompts
14
+ annotations_creators:
15
+ - found
16
+ language_creators:
17
+ - found
18
+ multilinguality:
19
+ - monolingual
20
+ source_datasets:
21
+ - bisect
22
  ---
23
 
24
  # bisect_fr_prompt_textual_simplification
25
  ## Summary
26
 
27
+ **bisect_fr_prompt_textual_simplification** is a subset of the [**Dataset of French Prompts (DFP)**](https://huggingface.co/datasets/CATIE-AQ/DFP).
28
+ It contains **9,889,420** rows that can be used for a textual simplification task.
29
+ The original data (without prompts) comes from the dataset [BiSECT](https://huggingface.co/datasets/GEM/BiSECT) by Kim et al. where only the French part has been kept.
30
  A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
31
 
32
 
 
67
 
68
 
69
  # Splits
70
+ - `train` with 9,820,700 samples
71
+ - `valid` with 20,720 samples
72
+ - `test` with 48,000 samples
73
 
74
 
75
  # How to use?
 
92
  ## This Dataset
93
 
94
 
95
+
96
+ ## License
97
+ cc-by-nc-4.0