bourdoiscatie commited on
Commit
6421348
·
1 Parent(s): eb4686b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -125
README.md CHANGED
@@ -39,7 +39,7 @@ license: cc-by-4.0
39
 
40
  # Dataset information
41
  Dataset concatenating all NER datasets, available in French and open-source, for 3 entities (LOC, PER, ORG).
42
- There are a total of **424,803** rows, of which 349,195 are for training, 33,464 for validation and 42,144 for testing.
43
  Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
44
 
45
 
@@ -48,85 +48,62 @@ Our methodology is described in a blog post available in [English](https://blog.
48
  from datasets import load_dataset
49
  dataset = load_dataset("CATIE-AQ/frenchNER")
50
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  ```
52
  DatasetDict({
53
  train: Dataset({
54
  features: ['tokens', 'ner_tags', 'dataset'],
55
- num_rows: 349195
56
  })
57
  validation: Dataset({
58
  features: ['tokens', 'ner_tags', 'dataset'],
59
- num_rows: 33464
60
  })
61
  test: Dataset({
62
  features: ['tokens', 'ner_tags', 'dataset'],
63
- num_rows: 42144
64
  })
65
  })
66
  ```
67
 
68
 
69
- # Dataset
70
- ## Dataset details
71
- PARLER DE LA DEDUPLICATION DES DONNEES ET DES LEAKS (INDIVIDUEL PUIS GLOBAL)
72
-
73
- ### Détails lignes
74
- | Dataset Original | Valeurs annoncées | Dataset Clean | Valeurs après Clean | Note |
75
- | ----------- | ----------- | ----------- | ----------- | ----------- |
76
- | [Mapa](https://huggingface.co/datasets/joelniklaus/mapa)| X train / X validation / X test | TODO | 1,259 train / 97 validation / 487 test | X |
77
- | [Multiconer](https://huggingface.co/datasets/aashsach/multiconer2)| X train / X validation / X test | TODO | 15,538 train / 827 validation / 855 test | X |
78
- | [Multinerd](https://huggingface.co/datasets/Babelscape/multinerd)| X train / X validation / X test | TODO | 137,917 train / 17,306 validation / 17,637 test | X |
79
- | [Pii-masking-200k](https://huggingface.co/datasets/ai4privacy/pii-masking-200k)| 61,958 train / 0 validation / 0 test | TODO | 61,958 train / 0 validation / 0 test | No leak or duplicated data |
80
- | [Redfm](https://huggingface.co/datasets/Babelscape/REDFM)| X train / X validation / X test | TODO | 1,865 train / 416 validation / 415 test | X |
81
- | [Wikiann](https://huggingface.co/datasets/wikiann)| X train / X validation / X test | TODO | 17,362 train / 8,824 validation / 9,357 test | X |
82
- | [Wikiner](https://huggingface.co/datasets/Jean-Baptiste/wikiner_fr)| 120,682 train / 0 validation / 13,410 test | TODO | 120,063 train / 0 validation / 13,393 test | En pratique, 5% de val créée, donc 113,296 train / 5,994 validation / 13,393 test |
83
-
84
- Total :
85
- 288,309 train / 34,078 validation / 42,144 test
86
- 287,237 train / 33,464 validation / 42,144 test
87
- Leaks et duplications (apparues après la concaténation : une donnée du split d'entraînement A peut ne pas être dans le split de test de A mais être présente dans le jeu de test de B et donc ça crée un leak dans le jeu de données A+B) :
88
- leaks in train split: 1071
89
- leaks in valsplit: 613
90
- duplicate sentences in train dataset: 1839
91
- duplicate sentences in val dataset: 55
92
- duplicate sentences in test dataset: 8
93
-
94
- Mapa
95
- 1297 train / 97 val / 490 test
96
- APRES NETTOYAGE A FAIRE
97
-
98
- Multiconer
99
- 16 548 train / 857 validation
100
- 16 364 train / 855 validation
101
- leaks in train split (w.r.t val split): 13
102
- duplicate sentences in train dataset: 186
103
- duplicate sentences in validation dataset: 2
104
-
105
- MULITNERD
106
- 140 880 train / 17 610 val / 17 695 test
107
- 138 221 train / 17 409 val / 17 637 test
108
- leaks in train split: 69
109
- leaks in val split: 20
110
- duplicate sentences in train dataset: 2600
111
- duplicate sentences in val dataset: 201
112
- duplicate sentences in test dataset: 58
113
-
114
- wikiann :
115
- 20 000 train / 10 000 val / 10 000 test
116
- 17 370 train / 9 300 val / 9 375 test
117
- leaks in train split: 742
118
- leaks in val split: 473
119
- duplicate sentences in train dataset: 1889
120
- duplicate sentences in val dataset: 700
121
- duplicate sentences in test dataset: 644
122
-
123
-
124
- wikiner:
125
- leaks in train split: 23
126
- duplicate sentences in train dataset: 599
127
- duplicate sentences in test dataset: 17
128
-
129
- ### Détails entitées (après nettoyage)
130
 
131
  <table>
132
  <thead>
@@ -140,28 +117,6 @@ duplicate sentences in test dataset: 17
140
  </tr>
141
  </thead>
142
  <tbody>
143
- <tr>
144
- <td rowspan="3"><br>Mapa</td>
145
- <td><br>train</td>
146
- <td><br>61,959</td>
147
- <td><br>745</td>
148
- <td><br>208</td>
149
- <td><br>314</td>
150
- </tr>
151
- <tr>
152
- <td><br>validation</td>
153
- <td><br>7,826</td>
154
- <td><br>51</td>
155
- <td><br>24</td>
156
- <td><br>78</td>
157
- </tr>
158
- <tr>
159
- <td><br>test</td>
160
- <td><br>21,981</td>
161
- <td><br>121</td>
162
- <td><br>32</td>
163
- <td><br>298</td>
164
- </tr>
165
  <tr>
166
  <td rowspan="3"><br>Multiconer</td>
167
  <td><br>train</td>
@@ -213,28 +168,6 @@ duplicate sentences in test dataset: 17
213
  <td><br>29,838</td>
214
  <td><br>42,154</td>
215
  <td><br>12,310</td>
216
- </tr>
217
- <tr>
218
- <td rowspan="3"><br>Redfm</td>
219
- <td><br>train</td>
220
- <td><br>130,152</td>
221
- <td><br>2,833</td>
222
- <td><br>7,889</td>
223
- <td><br>4,096</td>
224
- </tr>
225
- <tr>
226
- <td><br>validation</td>
227
- <td><br>23,133</td>
228
- <td><br>859</td>
229
- <td><br>757</td>
230
- <td><br>729</td>
231
- </tr>
232
- <tr>
233
- <td><br>test</td>
234
- <td><br>22,951</td>
235
- <td><br>675</td>
236
- <td><br>930</td>
237
- <td><br>708</td>
238
  </tr>
239
  <tr>
240
  <td rowspan="3"><br>Wikiann</td>
@@ -283,24 +216,24 @@ duplicate sentences in test dataset: 17
283
  <tr>
284
  <td rowspan="3"><br>Total</td>
285
  <td><br>train</td>
286
- <td><br><b>8,590,876</b></td>
287
- <td><br><b>330,971</b></td>
288
- <td><br><b>311,819</b></td>
289
- <td><br><b>155,900</b></td>
290
  </tr>
291
  <tr>
292
  <td><br>validation</td>
293
- <td><br><b>623,774</b></td>
294
- <td><br><b>35,037</b></td>
295
- <td><br><b>31,060</b></td>
296
- <td><br><b>19,550</b></td>
297
  </tr>
298
  <tr>
299
  <td><br>test</td>
300
- <td><br><b>818,803</b></td>
301
- <td><br><b>44,430</b></td>
302
- <td><br><b>40,157</b></td>
303
- <td><br><b>22,397</b></td>
304
  </tr>
305
  </tbody>
306
  </table>
@@ -326,13 +259,75 @@ dataset_train.head()
326
 
327
 
328
  ## Split
329
- - `train` corresponds to the concatenation of
330
- - `validation` corresponds to the concatenation of
331
- - `test` corresponds to the concatenation of
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332
 
 
 
 
 
 
 
 
 
 
 
 
333
 
334
 
335
- # Citation
336
  ```
337
  A GENERER
338
  ```
 
39
 
40
  # Dataset information
41
  Dataset concatenating all NER datasets, available in French and open-source, for 3 entities (LOC, PER, ORG).
42
+ There are a total of **420,264** rows, of which 346,071 are for training, 32,951 for validation and 41,242 for testing.
43
  Our methodology is described in a blog post available in [English](https://blog.vaniila.ai/en/NER_en/) or [French](https://blog.vaniila.ai/NER/).
44
 
45
 
 
48
  from datasets import load_dataset
49
  dataset = load_dataset("CATIE-AQ/frenchNER")
50
  ```
51
+
52
+
53
+ # Dataset
54
+ ## Details of rows
55
+ | Dataset Original | Splits | Note |
56
+ | ----------- | ----------- | ----------- |
57
+ | [Multiconer](https://huggingface.co/datasets/aashsach/multiconer2)| 16,548 train / 857 validation / 0 test | In practice, we use the original validation set as test set<br> and creat a new val set from 5% of train created, i.e.<br> 15,721 train / 827 validation / 857 test|
58
+ | [Multinerd](https://huggingface.co/datasets/Babelscape/multinerd)| 140,880 train / 17,610 val / 17,695 test | |
59
+ | [Pii-masking-200k](https://huggingface.co/datasets/ai4privacy/pii-masking-200k)| 61,958 train / 0 validation / 0 test | Only dataset without duplicate data or leaks |
60
+ | [Wikiann](https://huggingface.co/datasets/wikiann)| 20,000 train / 10,000 val / 10,000 test | |
61
+ | [Wikiner](https://huggingface.co/datasets/Jean-Baptiste/wikiner_fr)| 120,682 train / 0 validation / 13,410 test | In practice, 5% of val created from train set, i.e.<br> 113,296 train / 5,994 validation / 13,393 test |
62
+
63
+
64
+ ## Removing duplicate data and leaks
65
+ The sum of the values of the datasets listed here gives the following result:
66
+
67
+ ```
68
+ DatasetDict({
69
+ train: Dataset({
70
+ features: ['text', 'summary', 'dataset'],
71
+ num_rows: 351855
72
+ })
73
+ validation: Dataset({
74
+ features: ['text', 'summary', 'dataset'],
75
+ num_rows: 34431
76
+ })
77
+ test: Dataset({
78
+ features: ['text', 'summary', 'dataset'],
79
+ num_rows: 41945
80
+ })
81
+ })
82
+ ```
83
+
84
+ However, a data item in training split A may not be in A's test split, but may be present in B's test set, creating a leak when we create the A+B dataset.
85
+ The same logic applies to duplicate data. So we need to make sure we remove them.
86
+ After our clean-up, we finally have the following numbers:
87
+
88
  ```
89
  DatasetDict({
90
  train: Dataset({
91
  features: ['tokens', 'ner_tags', 'dataset'],
92
+ num_rows: 346071
93
  })
94
  validation: Dataset({
95
  features: ['tokens', 'ner_tags', 'dataset'],
96
+ num_rows: 32951
97
  })
98
  test: Dataset({
99
  features: ['tokens', 'ner_tags', 'dataset'],
100
+ num_rows: 41242
101
  })
102
  })
103
  ```
104
 
105
 
106
+ ### Details of entities (after cleaning)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  <table>
109
  <thead>
 
117
  </tr>
118
  </thead>
119
  <tbody>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  <tr>
121
  <td rowspan="3"><br>Multiconer</td>
122
  <td><br>train</td>
 
168
  <td><br>29,838</td>
169
  <td><br>42,154</td>
170
  <td><br>12,310</td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  </tr>
172
  <tr>
173
  <td rowspan="3"><br>Wikiann</td>
 
216
  <tr>
217
  <td rowspan="3"><br>Total</td>
218
  <td><br>train</td>
219
+ <td><br><b>8,398,765</b></td>
220
+ <td><br><b>327,393</b></td>
221
+ <td><br><b>303,722</b></td>
222
+ <td><br><b>151,490</b></td>
223
  </tr>
224
  <tr>
225
  <td><br>validation</td>
226
+ <td><br><b>592,815</b></td>
227
+ <td><br><b>34,127</b></td>
228
+ <td><br><b>30,279</b></td>
229
+ <td><br><b>18,743</b></td>
230
  </tr>
231
  <tr>
232
  <td><br>test</td>
233
+ <td><br><b>773,871</b></td>
234
+ <td><br><b>43,634</b></td>
235
+ <td><br><b>39,195</b></td>
236
+ <td><br><b>21,391</b></td>
237
  </tr>
238
  </tbody>
239
  </table>
 
259
 
260
 
261
  ## Split
262
+ - `train` corresponds to the concatenation of `multiconer` + `multinerd` + `pii-masking-200k` + `wikiann` + `wikiner`
263
+ - `validation` corresponds to the concatenation of `multiconer` + `multinerd` + `wikiann` + `wikiner`
264
+ - `test` corresponds to the concatenation of `multiconer` + `multinerd` + `wikiann` + `wikiner`
265
+
266
+
267
+
268
+ # Citations
269
+
270
+ ### multiconer
271
+
272
+ > @inproceedings{multiconer2-report,
273
+ title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}},
274
+ author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin},
275
+ booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)},
276
+ year={2023},
277
+ publisher={Association for Computational Linguistics}}
278
+
279
+ > @article{multiconer2-data,
280
+ title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}},
281
+ author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin},
282
+ year={2023}}
283
+
284
+
285
+ ### multinerd
286
+
287
+ > @inproceedings{tedeschi-navigli-2022-multinerd,
288
+ title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",
289
+ author = "Tedeschi, Simone and Navigli, Roberto",
290
+ booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",
291
+ month = jul,
292
+ year = "2022",
293
+ address = "Seattle, United States",
294
+ publisher = "Association for Computational Linguistics",
295
+ url = "https://aclanthology.org/2022.findings-naacl.60",
296
+ doi = "10.18653/v1/2022.findings-naacl.60",
297
+ pages = "801--812"}
298
+
299
+
300
+ ### pii-masking-200k
301
+
302
+ ### wikiann
303
+
304
+ > @inproceedings{rahimi-etal-2019-massively,
305
+ title = "Massively Multilingual Transfer for {NER}",
306
+ author = "Rahimi, Afshin and Li, Yuan and Cohn, Trevor",
307
+ booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
308
+ month = jul,
309
+ year = "2019",
310
+ address = "Florence, Italy",
311
+ publisher = "Association for Computational Linguistics",
312
+ url = "https://www.aclweb.org/anthology/P19-1015",
313
+ pages = "151--164"}
314
+
315
+ ### wikiner
316
 
317
+ > @article{NOTHMAN2013151,
318
+ title = {Learning multilingual named entity recognition from Wikipedia},
319
+ journal = {Artificial Intelligence},
320
+ volume = {194},
321
+ pages = {151-175},
322
+ year = {2013},
323
+ note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources},
324
+ issn = {0004-3702},
325
+ doi = {https://doi.org/10.1016/j.artint.2012.03.006},
326
+ url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276},
327
+ author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}}
328
 
329
 
330
+ ### frenchNER
331
  ```
332
  A GENERER
333
  ```