File size: 3,551 Bytes
eea17d6
196c302
 
 
 
 
 
 
 
 
 
 
 
 
 
4d66662
196c302
 
 
 
 
4d66662
196c302
eea17d6
842ea51
 
 
 
 
 
 
 
7a44f43
842ea51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a44f43
842ea51
 
 
 
 
7a44f43
842ea51
7a44f43
 
f953148
7a44f43
842ea51
7a44f43
842ea51
7a44f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
842ea51
 
 
f953148
842ea51
 
 
7a44f43
842ea51
 
 
7a44f43
842ea51
 
 
7a44f43
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
languages:
- en
- zh-CN
licenses:
- cc-by-sa-4.0
multilinguality:
- multilingual
pretty_name: 'ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in
  Multi-turn Conversation'
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids:
- code-switching
- speech-recognition
---

# Dataset Card for ASCEND

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Usage](#usage)
- [Dataset Structure](#dataset-structure)
  - [Data Splits](#data-instances)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [Needs More Information]
- **Repository:** [Needs More Information]
- **Paper:** https://arxiv.org/abs/2112.06223
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.

### Supported Tasks and Leaderboards

Code-switching.

### Languages

Chinese and English

## Usage

```
import datasets
dataset = datasets.load_dataset("CAiRE/ASCEND") # Full dataset, complete with train, validation, and test set
```

## Dataset Structure

A typical data point comprises the path to the audio file, the loaded audio array, and its transcription. Additional fields include datapoint id, duration, language, speaker id, session id, and topic.

```
{
	'id': '00000',
	'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses1_spk17_L3818_9.3200_0.6400.wav',
	'audio': {
		'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses1_spk17_L3818_9.3200_0.6400.wav',
		'array': array([0.00057983, 0.00073242, 0.00125122, ..., 0.00204468, 0.00250244,
			0.00201416
		], dtype = float32),
		'sampling_rate': 16000
	},
	'transcription': '好的',
	'duration': 0.6399999856948853,
	'language': 'zh',
	'original_speaker_id': 17,
	'session_id': 1,
	'topic': 'persona'
}
```

### Data Splits

Number of utterances: 9,869 train, 1,130 validation, and 1,315 test.

## Additional Information

For comprehensive explanations, please check [our paper](https://arxiv.org/pdf/2112.06223.pdf).

### Licensing Information

Creative Common Attribution Share-Alike 4.0 International (CC-BY-SA 4.0)

### Citation Information

If you use our dataset, please cite us:

```
@inproceedings{lovenia2022ascend,
  title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
  author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
  booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)},
  year={2022}
 ```