Datasets:
Delete loading script
Browse files
ASCEND.py
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" Common Voice Dataset"""
|
16 |
-
|
17 |
-
from datasets import AutomaticSpeechRecognition
|
18 |
-
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
import os
|
22 |
-
import pandas as pd
|
23 |
-
|
24 |
-
|
25 |
-
_CITATION = """\
|
26 |
-
@inproceedings{lovenia2021ascend,
|
27 |
-
title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
|
28 |
-
author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
|
29 |
-
booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},
|
30 |
-
publisher = {European Language Resources Association},
|
31 |
-
year = {2022},
|
32 |
-
pages = {}
|
33 |
-
}
|
34 |
-
"""
|
35 |
-
|
36 |
-
_DESCRIPTION = """\
|
37 |
-
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
|
38 |
-
"""
|
39 |
-
|
40 |
-
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
|
41 |
-
|
42 |
-
_URL = "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/"
|
43 |
-
_URLS = {
|
44 |
-
"train": _URL + "train_metadata.csv",
|
45 |
-
"test": _URL + "test_metadata.csv",
|
46 |
-
"validation": _URL + "validation_metadata.csv",
|
47 |
-
"waves": "https://huggingface.co/datasets/CAiRE/ASCEND/resolve/main/waves.tar.bz2",
|
48 |
-
}
|
49 |
-
|
50 |
-
|
51 |
-
class ASCENDConfig(datasets.BuilderConfig):
|
52 |
-
"""BuilderConfig for ASCEND."""
|
53 |
-
|
54 |
-
def __init__(self, name="main", **kwargs):
|
55 |
-
"""
|
56 |
-
Args:
|
57 |
-
**kwargs: keyword arguments forwarded to super.
|
58 |
-
"""
|
59 |
-
super(ASCENDConfig, self).__init__(name, **kwargs)
|
60 |
-
|
61 |
-
|
62 |
-
class ASCEND(datasets.GeneratorBasedBuilder):
|
63 |
-
"""ASCEND: A Spontaneous Chinese-English Dataset for code-switching. Snapshot date: 5 January 2022."""
|
64 |
-
|
65 |
-
BUILDER_CONFIGS = [
|
66 |
-
ASCENDConfig(
|
67 |
-
name="main",
|
68 |
-
version=datasets.Version("1.0.0", ""),
|
69 |
-
description=_DESCRIPTION,
|
70 |
-
)
|
71 |
-
]
|
72 |
-
|
73 |
-
def _info(self):
|
74 |
-
features = datasets.Features(
|
75 |
-
{
|
76 |
-
"id": datasets.Value("string"),
|
77 |
-
"path": datasets.Value("string"),
|
78 |
-
"audio": datasets.Audio(sampling_rate=16_000),
|
79 |
-
"transcription": datasets.Value("string"),
|
80 |
-
"duration": datasets.Value("float32"),
|
81 |
-
"language": datasets.Value("string"),
|
82 |
-
"original_speaker_id": datasets.Value("int64"),
|
83 |
-
"session_id": datasets.Value("int64"),
|
84 |
-
"topic": datasets.Value("string"),
|
85 |
-
}
|
86 |
-
)
|
87 |
-
return datasets.DatasetInfo(
|
88 |
-
description=_DESCRIPTION,
|
89 |
-
features=features,
|
90 |
-
supervised_keys=None,
|
91 |
-
homepage=_HOMEPAGE,
|
92 |
-
citation=_CITATION,
|
93 |
-
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")],
|
94 |
-
)
|
95 |
-
|
96 |
-
def _split_generators(self, dl_manager):
|
97 |
-
downloaded_files = dl_manager.download_and_extract(_URLS)
|
98 |
-
|
99 |
-
return [
|
100 |
-
datasets.SplitGenerator(
|
101 |
-
name=datasets.Split.TRAIN,
|
102 |
-
gen_kwargs={
|
103 |
-
"metadata_path": downloaded_files["train"],
|
104 |
-
"wave_path": downloaded_files["waves"],
|
105 |
-
},
|
106 |
-
),
|
107 |
-
datasets.SplitGenerator(
|
108 |
-
name=datasets.Split.TEST,
|
109 |
-
gen_kwargs={
|
110 |
-
"metadata_path": downloaded_files["test"],
|
111 |
-
"wave_path": downloaded_files["waves"],
|
112 |
-
},
|
113 |
-
),
|
114 |
-
datasets.SplitGenerator(
|
115 |
-
name=datasets.Split.VALIDATION,
|
116 |
-
gen_kwargs={
|
117 |
-
"metadata_path": downloaded_files["validation"],
|
118 |
-
"wave_path": downloaded_files["waves"],
|
119 |
-
},
|
120 |
-
),
|
121 |
-
]
|
122 |
-
|
123 |
-
def _generate_examples(self, metadata_path, wave_path):
|
124 |
-
print(metadata_path)
|
125 |
-
metadata_df = pd.read_csv(metadata_path)
|
126 |
-
|
127 |
-
for index, row in metadata_df.iterrows():
|
128 |
-
example = {
|
129 |
-
"id": str(index).zfill(5),
|
130 |
-
"path": os.path.join(wave_path, row["file_name"]),
|
131 |
-
"audio": os.path.join(wave_path, row["file_name"]),
|
132 |
-
"transcription": row["transcription"],
|
133 |
-
"duration": row["duration"],
|
134 |
-
"language": row["language"],
|
135 |
-
"original_speaker_id": row["original_speaker_id"],
|
136 |
-
"session_id": row["session_id"],
|
137 |
-
"topic": row["topic"],
|
138 |
-
}
|
139 |
-
yield index, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|