|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""VCTK dataset.""" |
|
|
|
|
|
import os |
|
import re |
|
|
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{Veaux2017CSTRVC, |
|
title = {CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit}, |
|
author = {Christophe Veaux and Junichi Yamagishi and Kirsten MacDonald}, |
|
year = 2017 |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The CSTR VCTK Corpus includes speech data uttered by 110 English speakers with various accents. |
|
""" |
|
|
|
_URL = "https://datashare.ed.ac.uk/handle/10283/3443" |
|
_DL_URL = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip" |
|
|
|
|
|
class VCTK(datasets.GeneratorBasedBuilder): |
|
"""VCTK dataset.""" |
|
|
|
VERSION = datasets.Version("0.9.2") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="main", version=VERSION, description="VCTK dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"speaker_id": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=48_000), |
|
"file": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_id": datasets.Value("string"), |
|
"age": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"accent": datasets.Value("string"), |
|
"region": datasets.Value("string"), |
|
"comment": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
root_path = dl_manager.download_and_extract(_DL_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"root_path": root_path}), |
|
] |
|
|
|
def _generate_examples(self, root_path): |
|
"""Generate examples from the VCTK corpus root path.""" |
|
|
|
meta_path = os.path.join(root_path, "speaker-info.txt") |
|
txt_root = os.path.join(root_path, "txt") |
|
wav_root = os.path.join(root_path, "wav48_silence_trimmed") |
|
|
|
fields = ["speaker_id", "age", "gender", "accent", "region"] |
|
|
|
key = 0 |
|
with open(meta_path, encoding="utf-8") as meta_file: |
|
_ = next(iter(meta_file)) |
|
for line in meta_file: |
|
data = {} |
|
line = line.strip() |
|
search = re.search(r"\(.*\)", line) |
|
if search is None: |
|
data["comment"] = "" |
|
else: |
|
start, _ = search.span() |
|
data["comment"] = line[start:] |
|
line = line[:start] |
|
values = line.split() |
|
for i, field in enumerate(fields): |
|
if field == "region": |
|
data[field] = " ".join(values[i:]) |
|
else: |
|
data[field] = values[i] if i < len(values) else "" |
|
speaker_id = data["speaker_id"] |
|
speaker_txt_path = os.path.join(txt_root, speaker_id) |
|
speaker_wav_path = os.path.join(wav_root, speaker_id) |
|
|
|
if not os.path.exists(speaker_txt_path): |
|
continue |
|
for txt_file in sorted(os.listdir(speaker_txt_path)): |
|
filename, _ = os.path.splitext(txt_file) |
|
_, text_id = filename.split("_") |
|
for i in [1, 2]: |
|
wav_file = os.path.join(speaker_wav_path, f"{filename}_mic{i}.flac") |
|
|
|
if not os.path.exists(wav_file): |
|
continue |
|
with open(os.path.join(speaker_txt_path, txt_file), encoding="utf-8") as text_file: |
|
text = text_file.readline().strip() |
|
more_data = { |
|
"file": wav_file, |
|
"audio": wav_file, |
|
"text": text, |
|
"text_id": text_id, |
|
} |
|
yield key, {**data, **more_data} |
|
key += 1 |
|
|