Unnamed: 0.1
int64
0
113k
Unnamed: 0
float64
0
113k
title
stringlengths
7
246
abstract
stringlengths
6
3.31k
800
800
The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond
This paper presents a finite-time analysis of the KL-UCB algorithm, an online, horizon-free index policy for stochastic bandit problems. We prove two distinct results: first, for arbitrary bounded rewards, the KL-UCB algorithm satisfies a uniformly better regret bound than UCB or UCB2; second, in the special case of Bernoulli rewards, it reaches the lower bound of Lai and Robbins. Furthermore, we show that simple adaptations of the KL-UCB algorithm are also optimal for specific classes of (possibly unbounded) rewards, including those generated from exponential families of distributions. A large-scale numerical study comparing KL-UCB with its main competitors (UCB, UCB2, UCB-Tuned, UCB-V, DMED) shows that KL-UCB is remarkably efficient and stable, including for short time horizons. KL-UCB is also the only method that always performs better than the basic UCB policy. Our regret bounds rely on deviations results of independent interest which are stated and proved in the Appendix. As a by-product, we also obtain an improved regret bound for the standard UCB algorithm.
801
801
A General Framework for Development of the Cortex-like Visual Object Recognition System: Waves of Spikes, Predictive Coding and Universal Dictionary of Features
This study is focused on the development of the cortex-like visual object recognition system. We propose a general framework, which consists of three hierarchical levels (modules). These modules functionally correspond to the V1, V4 and IT areas. Both bottom-up and top-down connections between the hierarchical levels V4 and IT are employed. The higher the degree of matching between the input and the preferred stimulus, the shorter the response time of the neuron. Therefore information about a single stimulus is distributed in time and is transmitted by the waves of spikes. The reciprocal connections and waves of spikes implement predictive coding: an initial hypothesis is generated on the basis of information delivered by the first wave of spikes and is tested with the information carried by the consecutive waves. The development is considered as extraction and accumulation of features in V4 and objects in IT. Once stored a feature can be disposed, if rarely activated. This cause update of feature repository. Consequently, objects in IT are also updated. This illustrates the growing process and dynamical change of topological structures of V4, IT and connections between these areas.
802
802
Transductive Ordinal Regression
Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, is often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive settings, for general ordinal regression. A label swapping scheme that facilitates a strictly monotonic decrease in the objective function value is also introduced. Extensive numerical studies on commonly used benchmark datasets including the real world sentiment prediction problem are then presented to showcase the characteristics and efficacies of the proposed transductive ordinal regression. Further, comparisons to recent state-of-the-art ordinal regression methods demonstrate the introduced transductive learning paradigm for ordinal regression led to the robust and improved performance.
803
803
Decentralized Restless Bandit with Multiple Players and Unknown Dynamics
We consider decentralized restless multi-armed bandit problems with unknown dynamics and multiple players. The reward state of each arm transits according to an unknown Markovian rule when it is played and evolves according to an arbitrary unknown random process when it is passive. Players activating the same arm at the same time collide and suffer from reward loss. The objective is to maximize the long-term reward by designing a decentralized arm selection policy to address unknown reward models and collisions among players. A decentralized policy is constructed that achieves a regret with logarithmic order when an arbitrary nontrivial bound on certain system parameters is known. When no knowledge about the system is available, we extend the policy to achieve a regret arbitrarily close to the logarithmic order. The result finds applications in communication networks, financial investment, and industrial engineering.
804
804
Selecting the rank of truncated SVD by Maximum Approximation Capacity
Truncated Singular Value Decomposition (SVD) calculates the closest rank-$k$ approximation of a given input matrix. Selecting the appropriate rank $k$ defines a critical model order choice in most applications of SVD. To obtain a principled cut-off criterion for the spectrum, we convert the underlying optimization problem into a noisy channel coding problem. The optimal approximation capacity of this channel controls the appropriate strength of regularization to suppress noise. In simulation experiments, this information theoretic method to determine the optimal rank competes with state-of-the art model selection techniques.
805
805
Adaptive Cluster Expansion for Inferring Boltzmann Machines with Noisy Data
We introduce a procedure to infer the interactions among a set of binary variables, based on their sampled frequencies and pairwise correlations. The algorithm builds the clusters of variables contributing most to the entropy of the inferred Ising model, and rejects the small contributions due to the sampling noise. Our procedure successfully recovers benchmark Ising models even at criticality and in the low temperature phase, and is applied to neurobiological data.
806
806
Online Learning of Rested and Restless Bandits
In this paper we study the online learning problem involving rested and restless multiarmed bandits with multiple plays. The system consists of a single player/user and a set of K finite-state discrete-time Markov chains (arms) with unknown state spaces and statistics. At each time step the player can play M arms. The objective of the user is to decide for each step which M of the K arms to play over a sequence of trials so as to maximize its long term reward. The restless multiarmed bandit is particularly relevant to the application of opportunistic spectrum access (OSA), where a (secondary) user has access to a set of K channels, each of time-varying condition as a result of random fading and/or certain primary users' activities.
807
807
Active Clustering: Robust and Efficient Hierarchical Clustering using Adaptively Selected Similarities
Hierarchical clustering based on pairwise similarities is a common tool used in a broad range of scientific applications. However, in many problems it may be expensive to obtain or compute similarities between the items to be clustered. This paper investigates the hierarchical clustering of N items based on a small subset of pairwise similarities, significantly less than the complete set of N(N-1)/2 similarities. First, we show that if the intracluster similarities exceed intercluster similarities, then it is possible to correctly determine the hierarchical clustering from as few as 3N log N similarities. We demonstrate this order of magnitude savings in the number of pairwise similarities necessitates sequentially selecting which similarities to obtain in an adaptive fashion, rather than picking them at random. We then propose an active clustering method that is robust to a limited fraction of anomalous similarities, and show how even in the presence of these noisy similarity values we can resolve the hierarchical clustering using only O(N log^2 N) pairwise similarities.
808
808
Inferring Disease and Gene Set Associations with Rank Coherence in Networks
A computational challenge to validate the candidate disease genes identified in a high-throughput genomic study is to elucidate the associations between the set of candidate genes and disease phenotypes. The conventional gene set enrichment analysis often fails to reveal associations between disease phenotypes and the gene sets with a short list of poorly annotated genes, because the existing annotations of disease causative genes are incomplete. We propose a network-based computational approach called rcNet to discover the associations between gene sets and disease phenotypes. Assuming coherent associations between the genes ranked by their relevance to the query gene set, and the disease phenotypes ranked by their relevance to the hidden target disease phenotypes of the query gene set, we formulate a learning framework maximizing the rank coherence with respect to the known disease phenotype-gene associations. An efficient algorithm coupling ridge regression with label propagation, and two variants are introduced to find the optimal solution of the framework. We evaluated the rcNet algorithms and existing baseline methods with both leave-one-out cross-validation and a task of predicting recently discovered disease-gene associations in OMIM. The experiments demonstrated that the rcNet algorithms achieved the best overall rankings compared to the baselines. To further validate the reproducibility of the performance, we applied the algorithms to identify the target diseases of novel candidate disease genes obtained from recent studies of GWAS, DNA copy number variation analysis, and gene expression profiling. The algorithms ranked the target disease of the candidate genes at the top of the rank list in many cases across all the three case studies. The rcNet algorithms are available as a webtool for disease and gene set association analysis at http://compbio.cs.umn.edu/dgsa_rcNet.
809
809
Concentration-Based Guarantees for Low-Rank Matrix Reconstruction
We consider the problem of approximately reconstructing a partially-observed, approximately low-rank matrix. This problem has received much attention lately, mostly using the trace-norm as a surrogate to the rank. Here we study low-rank matrix reconstruction using both the trace-norm, as well as the less-studied max-norm, and present reconstruction guarantees based on existing analysis on the Rademacher complexity of the unit balls of these norms. We show how these are superior in several ways to recently published guarantees based on specialized analysis.
810
810
Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning
We address the sparse signal recovery problem in the context of multiple measurement vectors (MMV) when elements in each nonzero row of the solution matrix are temporally correlated. Existing algorithms do not consider such temporal correlations and thus their performance degrades significantly with the correlations. In this work, we propose a block sparse Bayesian learning framework which models the temporal correlations. In this framework we derive two sparse Bayesian learning (SBL) algorithms, which have superior recovery performance compared to existing algorithms, especially in the presence of high temporal correlations. Furthermore, our algorithms are better at handling highly underdetermined problems and require less row-sparsity on the solution matrix. We also provide analysis of the global and local minima of their cost function, and show that the SBL cost function has the very desirable property that the global minimum is at the sparsest solution to the MMV problem. Extensive experiments also provide some interesting results that motivate future theoretical research on the MMV model.
811
811
Privacy Preserving Spam Filtering
Email is a private medium of communication, and the inherent privacy constraints form a major obstacle in developing effective spam filtering methods which require access to a large amount of email data belonging to multiple users. To mitigate this problem, we envision a privacy preserving spam filtering system, where the server is able to train and evaluate a logistic regression based spam classifier on the combined email data of all users without being able to observe any emails using primitives such as homomorphic encryption and randomization. We analyze the protocols for correctness and security, and perform experiments of a prototype system on a large scale spam filtering task. State of the art spam filters often use character n-grams as features which result in large sparse data representation, which is not feasible to be used directly with our training and evaluation protocols. We explore various data independent dimensionality reduction which decrease the running time of the protocol making it feasible to use in practice while achieving high accuracy.
812
812
Sparse neural networks with large learning diversity
Coded recurrent neural networks with three levels of sparsity are introduced. The first level is related to the size of messages, much smaller than the number of available neurons. The second one is provided by a particular coding rule, acting as a local constraint in the neural activity. The third one is a characteristic of the low final connection density of the network after the learning phase. Though the proposed network is very simple since it is based on binary neurons and binary connections, it is able to learn a large number of messages and recall them, even in presence of strong erasures. The performance of the network is assessed as a classifier and as an associative memory.
813
813
Link Prediction by De-anonymization: How We Won the Kaggle Social Network Challenge
This paper describes the winning entry to the IJCNN 2011 Social Network Challenge run by Kaggle.com. The goal of the contest was to promote research on real-world link prediction, and the dataset was a graph obtained by crawling the popular Flickr social photo sharing website, with user identities scrubbed. By de-anonymizing much of the competition test set using our own Flickr crawl, we were able to effectively game the competition. Our attack represents a new application of de-anonymization to gaming machine learning contests, suggesting changes in how future competitions should be run. We introduce a new simulated annealing-based weighted graph matching algorithm for the seeding step of de-anonymization. We also show how to combine de-anonymization with link prediction---the latter is required to achieve good performance on the portion of the test set not de-anonymized---for example by training the predictor on the de-anonymized portion of the test set, and combining probabilistic predictions from de-anonymization and link prediction.
814
814
Internal Regret with Partial Monitoring. Calibration-Based Optimal Algorithms
We provide consistent random algorithms for sequential decision under partial monitoring, i.e. when the decision maker does not observe the outcomes but receives instead random feedback signals. Those algorithms have no internal regret in the sense that, on the set of stages where the decision maker chose his action according to a given law, the average payoff could not have been improved in average by using any other fixed law. They are based on a generalization of calibration, no longer defined in terms of a Voronoi diagram but instead of a Laguerre diagram (a more general concept). This allows us to bound, for the first time in this general framework, the expected average internal -- as well as the usual external -- regret at stage $n$ by $O(n^{-1/3})$, which is known to be optimal.
815
815
Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions
We analyze a class of estimators based on convex relaxation for solving high-dimensional matrix decomposition problems. The observations are noisy realizations of a linear transformation $\mathfrak{X}$ of the sum of an approximately) low rank matrix $\Theta^\star$ with a second matrix $\Gamma^\star$ endowed with a complementary form of low-dimensional structure; this set-up includes many statistical models of interest, including factor analysis, multi-task regression, and robust covariance estimation. We derive a general theorem that bounds the Frobenius norm error for an estimate of the pair $(\Theta^\star, \Gamma^\star)$ obtained by solving a convex optimization problem that combines the nuclear norm with a general decomposable regularizer. Our results utilize a "spikiness" condition that is related to but milder than singular vector incoherence. We specialize our general result to two cases that have been studied in past work: low rank plus an entrywise sparse matrix, and low rank plus a columnwise sparse matrix. For both models, our theory yields non-asymptotic Frobenius error bounds for both deterministic and stochastic noise matrices, and applies to matrices $\Theta^\star$ that can be exactly or approximately low rank, and matrices $\Gamma^\star$ that can be exactly or approximately sparse. Moreover, for the case of stochastic noise matrices and the identity observation operator, we establish matching lower bounds on the minimax error. The sharpness of our predictions is confirmed by numerical simulations.
816
816
Sparse Bayesian Methods for Low-Rank Matrix Estimation
Recovery of low-rank matrices has recently seen significant activity in many areas of science and engineering, motivated by recent theoretical results for exact reconstruction guarantees and interesting practical applications. A number of methods have been developed for this recovery problem. However, a principled method for choosing the unknown target rank is generally not provided. In this paper, we present novel recovery algorithms for estimating low-rank matrices in matrix completion and robust principal component analysis based on sparse Bayesian learning (SBL) principles. Starting from a matrix factorization formulation and enforcing the low-rank constraint in the estimates as a sparsity constraint, we develop an approach that is very effective in determining the correct rank while providing high recovery performance. We provide connections with existing methods in other similar problems and empirical results and comparisons with current state-of-the-art methods that illustrate the effectiveness of this approach.
817
817
Deformed Statistics Free Energy Model for Source Separation using Unsupervised Learning
A generalized-statistics variational principle for source separation is formulated by recourse to Tsallis' entropy subjected to the additive duality and employing constraints described by normal averages. The variational principle is amalgamated with Hopfield-like learning rules resulting in an unsupervised learning model. The update rules are formulated with the aid of q-deformed calculus. Numerical examples exemplify the efficacy of this model.
818
818
Decision Making Agent Searching for Markov Models in Near-Deterministic World
Reinforcement learning has solid foundations, but becomes inefficient in partially observed (non-Markovian) environments. Thus, a learning agent -born with a representation and a policy- might wish to investigate to what extent the Markov property holds. We propose a learning architecture that utilizes combinatorial policy optimization to overcome non-Markovity and to develop efficient behaviors, which are easy to inherit, tests the Markov property of the behavioral states, and corrects against non-Markovity by running a deterministic factored Finite State Model, which can be learned. We illustrate the properties of architecture in the near deterministic Ms. Pac-Man game. We analyze the architecture from the point of view of evolutionary, individual, and social learning.
819
819
Low Complexity Kolmogorov-Smirnov Modulation Classification
Kolmogorov-Smirnov (K-S) test-a non-parametric method to measure the goodness of fit, is applied for automatic modulation classification (AMC) in this paper. The basic procedure involves computing the empirical cumulative distribution function (ECDF) of some decision statistic derived from the received signal, and comparing it with the CDFs of the signal under each candidate modulation format. The K-S-based modulation classifier is first developed for AWGN channel, then it is applied to OFDM-SDMA systems to cancel multiuser interference. Regarding the complexity issue of K-S modulation classification, we propose a low-complexity method based on the robustness of the K-S classifier. Extensive simulation results demonstrate that compared with the traditional cumulant-based classifiers, the proposed K-S classifier offers superior classification performance and requires less number of signal samples (thus is fast).
820
820
Fast and Faster: A Comparison of Two Streamed Matrix Decomposition Algorithms
With the explosion of the size of digital dataset, the limiting factor for decomposition algorithms is the \emph{number of passes} over the input, as the input is often stored out-of-core or even off-site. Moreover, we're only interested in algorithms that operate in \emph{constant memory} w.r.t. to the input size, so that arbitrarily large input can be processed. In this paper, we present a practical comparison of two such algorithms: a distributed method that operates in a single pass over the input vs. a streamed two-pass stochastic algorithm. The experiments track the effect of distributed computing, oversampling and memory trade-offs on the accuracy and performance of the two algorithms. To ensure meaningful results, we choose the input to be a real dataset, namely the whole of the English Wikipedia, in the application settings of Latent Semantic Analysis.
821
821
Named Entity Recognition Using Web Document Corpus
This paper introduces a named entity recognition approach in textual corpus. This Named Entity (NE) can be a named: location, person, organization, date, time, etc., characterized by instances. A NE is found in texts accompanied by contexts: words that are left or right of the NE. The work mainly aims at identifying contexts inducing the NE's nature. As such, The occurrence of the word "President" in a text, means that this word or context may be followed by the name of a president as President "Obama". Likewise, a word preceded by the string "footballer" induces that this is the name of a footballer. NE recognition may be viewed as a classification method, where every word is assigned to a NE class, regarding the context. The aim of this study is then to identify and classify the contexts that are most relevant to recognize a NE, those which are frequently found with the NE. A learning approach using training corpus: web documents, constructed from learning examples is then suggested. Frequency representations and modified tf-idf representations are used to calculate the context weights associated to context frequency, learning example frequency, and document frequency in the corpus.
822
822
Neyman-Pearson classification, convexity and stochastic constraints
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i) its probability of type I error is below a pre-specified level and (ii), it has probability of type II error close to the minimum possible. The proposed classifier is obtained by solving an optimization problem with an empirical objective and an empirical constraint. New techniques to handle such problems are developed and have consequences on chance constrained programming.
823
823
A generic trust framework for large-scale open systems using machine learning
In many large scale distributed systems and on the web, agents need to interact with other unknown agents to carry out some tasks or transactions. The ability to reason about and assess the potential risks in carrying out such transactions is essential for providing a safe and reliable environment. A traditional approach to reason about the trustworthiness of a transaction is to determine the trustworthiness of the specific agent involved, derived from the history of its behavior. As a departure from such traditional trust models, we propose a generic, machine learning approach based trust framework where an agent uses its own previous transactions (with other agents) to build a knowledge base, and utilize this to assess the trustworthiness of a transaction based on associated features, which are capable of distinguishing successful transactions from unsuccessful ones. These features are harnessed using appropriate machine learning algorithms to extract relationships between the potential transaction and previous transactions. The trace driven experiments using real auction dataset show that this approach provides good accuracy and is highly efficient compared to other trust mechanisms, especially when historical information of the specific agent is rare, incomplete or inaccurate.
824
824
Multi-label Learning via Structured Decomposition and Group Sparsity
In multi-label learning, each sample is associated with several labels. Existing works indicate that exploring correlations between labels improve the prediction performance. However, embedding the label correlations into the training process significantly increases the problem size. Moreover, the mapping of the label structure in the feature space is not clear. In this paper, we propose a novel multi-label learning method "Structured Decomposition + Group Sparsity (SDGS)". In SDGS, we learn a feature subspace for each label from the structured decomposition of the training data, and predict the labels of a new sample from its group sparse representation on the multi-subspace obtained from the structured decomposition. In particular, in the training stage, we decompose the data matrix $X\in R^{n\times p}$ as $X=\sum_{i=1}^kL^i+S$, wherein the rows of $L^i$ associated with samples that belong to label $i$ are nonzero and consist a low-rank matrix, while the other rows are all-zeros, the residual $S$ is a sparse matrix. The row space of $L_i$ is the feature subspace corresponding to label $i$. This decomposition can be efficiently obtained via randomized optimization. In the prediction stage, we estimate the group sparse representation of a new sample on the multi-subspace via group \emph{lasso}. The nonzero representation coefficients tend to concentrate on the subspaces of labels that the sample belongs to, and thus an effective prediction can be obtained. We evaluate SDGS on several real datasets and compare it with popular methods. Results verify the effectiveness and efficiency of SDGS.
825
825
Natural Language Processing (almost) from Scratch
We propose a unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including: part-of-speech tagging, chunking, named entity recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made input features carefully optimized for each task, our system learns internal representations on the basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for building a freely available tagging system with good performance and minimal computational requirements.
826
826
Learning transformed product distributions
We consider the problem of learning an unknown product distribution $X$ over $\{0,1\}^n$ using samples $f(X)$ where $f$ is a \emph{known} transformation function. Each choice of a transformation function $f$ specifies a learning problem in this framework. Information-theoretic arguments show that for every transformation function $f$ the corresponding learning problem can be solved to accuracy $\eps$, using $\tilde{O}(n/\eps^2)$ examples, by a generic algorithm whose running time may be exponential in $n.$ We show that this learning problem can be computationally intractable even for constant $\eps$ and rather simple transformation functions. Moreover, the above sample complexity bound is nearly optimal for the general problem, as we give a simple explicit linear transformation function $f(x)=w \cdot x$ with integer weights $w_i \leq n$ and prove that the corresponding learning problem requires $\Omega(n)$ samples. As our main positive result we give a highly efficient algorithm for learning a sum of independent unknown Bernoulli random variables, corresponding to the transformation function $f(x)= \sum_{i=1}^n x_i$. Our algorithm learns to $\eps$-accuracy in poly$(n)$ time, using a surprising poly$(1/\eps)$ number of samples that is independent of $n.$ We also give an efficient algorithm that uses $\log n \cdot \poly(1/\eps)$ samples but has running time that is only $\poly(\log n, 1/\eps).$
827
827
Sparse Volterra and Polynomial Regression Models: Recoverability and Estimation
Volterra and polynomial regression models play a major role in nonlinear system identification and inference tasks. Exciting applications ranging from neuroscience to genome-wide association analysis build on these models with the additional requirement of parsimony. This requirement has high interpretative value, but unfortunately cannot be met by least-squares based or kernel regression methods. To this end, compressed sampling (CS) approaches, already successful in linear regression settings, can offer a viable alternative. The viability of CS for sparse Volterra and polynomial models is the core theme of this work. A common sparse regression task is initially posed for the two models. Building on (weighted) Lasso-based schemes, an adaptive RLS-type algorithm is developed for sparse polynomial regressions. The identifiability of polynomial models is critically challenged by dimensionality. However, following the CS principle, when these models are sparse, they could be recovered by far fewer measurements. To quantify the sufficient number of measurements for a given level of sparsity, restricted isometry properties (RIP) are investigated in commonly met polynomial regression settings, generalizing known results for their linear counterparts. The merits of the novel (weighted) adaptive CS algorithms to sparse polynomial modeling are verified through synthetic as well as real data tests for genotype-phenotype analysis.
828
828
Efficient Multi-Template Learning for Structured Prediction
Conditional random field (CRF) and Structural Support Vector Machine (Structural SVM) are two state-of-the-art methods for structured prediction which captures the interdependencies among output variables. The success of these methods is attributed to the fact that their discriminative models are able to account for overlapping features on the whole input observations. These features are usually generated by applying a given set of templates on labeled data, but improper templates may lead to degraded performance. To alleviate this issue, in this paper, we propose a novel multiple template learning paradigm to learn structured prediction and the importance of each template simultaneously, so that hundreds of arbitrary templates could be added into the learning model without caution. This paradigm can be formulated as a special multiple kernel learning problem with exponential number of constraints. Then we introduce an efficient cutting plane algorithm to solve this problem in the primal, and its convergence is presented. We also evaluate the proposed learning paradigm on two widely-studied structured prediction tasks, \emph{i.e.} sequence labeling and dependency parsing. Extensive experimental results show that the proposed method outperforms CRFs and Structural SVMs due to exploiting the importance of each template. Our complexity analysis and empirical results also show that our proposed method is more efficient than OnlineMKL on very sparse and high-dimensional data. We further extend this paradigm for structured prediction using generalized $p$-block norm regularization with $p>1$, and experiments show competitive performances when $p \in [1,2)$.
829
829
Estimating $\beta$-mixing coefficients
The literature on statistical learning for time series assumes the asymptotic independence or ``mixing' of the data-generating process. These mixing assumptions are never tested, nor are there methods for estimating mixing rates from data. We give an estimator for the $\beta$-mixing rate based on a single stationary sample path and show it is $L_1$-risk consistent.
830
830
Generalization error bounds for stationary autoregressive models
We derive generalization error bounds for stationary univariate autoregressive (AR) models. We show that imposing stationarity is enough to control the Gaussian complexity without further regularization. This lets us use structural risk minimization for model selection. We demonstrate our methods by predicting interest rate movements.
831
831
Adapting to Non-stationarity with Growing Expert Ensembles
When dealing with time series with complex non-stationarities, low retrospective regret on individual realizations is a more appropriate goal than low prospective risk in expectation. Online learning algorithms provide powerful guarantees of this form, and have often been proposed for use with non-stationary processes because of their ability to switch between different forecasters or ``experts''. However, existing methods assume that the set of experts whose forecasts are to be combined are all given at the start, which is not plausible when dealing with a genuinely historical or evolutionary system. We show how to modify the ``fixed shares'' algorithm for tracking the best expert to cope with a steadily growing set of experts, obtained by fitting new models to new data as it becomes available, and obtain regret bounds for the growing ensemble.
832
832
A Feature Selection Method for Multivariate Performance Measures
Feature selection with specific multivariate performance measures is the key to the success of many applications, such as image retrieval and text classification. The existing feature selection methods are usually designed for classification error. In this paper, we propose a generalized sparse regularizer. Based on the proposed regularizer, we present a unified feature selection framework for general loss functions. In particular, we study the novel feature selection paradigm by optimizing multivariate performance measures. The resultant formulation is a challenging problem for high-dimensional data. Hence, a two-layer cutting plane algorithm is proposed to solve this problem, and the convergence is presented. In addition, we adapt the proposed method to optimize multivariate measures for multiple instance learning problems. The analyses by comparing with the state-of-the-art feature selection methods show that the proposed method is superior to others. Extensive experiments on large-scale and high-dimensional real world datasets show that the proposed method outperforms $l_1$-SVM and SVM-RFE when choosing a small subset of features, and achieves significantly improved performances over SVM$^{perf}$ in terms of $F_1$-score.
833
833
Localization from Incomplete Noisy Distance Measurements
We consider the problem of positioning a cloud of points in the Euclidean space $\mathbb{R}^d$, using noisy measurements of a subset of pairwise distances. This task has applications in various areas, such as sensor network localization and reconstruction of protein conformations from NMR measurements. Also, it is closely related to dimensionality reduction problems and manifold learning, where the goal is to learn the underlying global geometry of a data set using local (or partial) metric information. Here we propose a reconstruction algorithm based on semidefinite programming. For a random geometric graph model and uniformly bounded noise, we provide a precise characterization of the algorithm's performance: In the noiseless case, we find a radius $r_0$ beyond which the algorithm reconstructs the exact positions (up to rigid transformations). In the presence of noise, we obtain upper and lower bounds on the reconstruction error that match up to a factor that depends only on the dimension $d$, and the average degree of the nodes in the graph.
834
834
A Gentle Introduction to the Kernel Distance
This document reviews the definition of the kernel distance, providing a gentle introduction tailored to a reader with background in theoretical computer science, but limited exposure to technology more common to machine learning, functional analysis and geometric measure theory. The key aspect of the kernel distance developed here is its interpretation as an L_2 distance between probability measures or various shapes (e.g. point sets, curves, surfaces) embedded in a vector space (specifically an RKHS). This structure enables several elegant and efficient solutions to data analysis problems. We conclude with a glimpse into the mathematical underpinnings of this measure, highlighting its recent independent evolution in two separate fields.
835
835
Information Theoretic Limits on Learning Stochastic Differential Equations
Consider the problem of learning the drift coefficient of a stochastic differential equation from a sample path. In this paper, we assume that the drift is parametrized by a high dimensional vector. We address the question of how long the system needs to be observed in order to learn this vector of parameters. We prove a general lower bound on this time complexity by using a characterization of mutual information as time integral of conditional variance, due to Kadota, Zakai, and Ziv. This general lower bound is applied to specific classes of linear and non-linear stochastic differential equations. In the linear case, the problem under consideration is the one of learning a matrix of interaction coefficients. We evaluate our lower bound for ensembles of sparse and dense random matrices. The resulting estimates match the qualitative behavior of upper bounds achieved by computationally efficient procedures.
836
836
COMET: A Recipe for Learning and Using Large Ensembles on Massive Data
COMET is a single-pass MapReduce algorithm for learning on large-scale data. It builds multiple random forest ensembles on distributed blocks of data and merges them into a mega-ensemble. This approach is appropriate when learning from massive-scale data that is too large to fit on a single machine. To get the best accuracy, IVoting should be used instead of bagging to generate the training subset for each decision tree in the random forest. Experiments with two large datasets (5GB and 50GB compressed) show that COMET compares favorably (in both accuracy and training time) to learning on a subsample of data using a serial algorithm. Finally, we propose a new Gaussian approach for lazy ensemble evaluation which dynamically decides how many ensemble members to evaluate per data point; this can reduce evaluation cost by 100X or more.
837
837
Heterogeneous Learning in Zero-Sum Stochastic Games with Incomplete Information
Learning algorithms are essential for the applications of game theory in a networking environment. In dynamic and decentralized settings where the traffic, topology and channel states may vary over time and the communication between agents is impractical, it is important to formulate and study games of incomplete information and fully distributed learning algorithms which for each agent requires a minimal amount of information regarding the remaining agents. In this paper, we address this major challenge and introduce heterogeneous learning schemes in which each agent adopts a distinct learning pattern in the context of games with incomplete information. We use stochastic approximation techniques to show that the heterogeneous learning schemes can be studied in terms of their deterministic ordinary differential equation (ODE) counterparts. Depending on the learning rates of the players, these ODEs could be different from the standard replicator dynamics, (myopic) best response (BR) dynamics, logit dynamics, and fictitious play dynamics. We apply the results to a class of security games in which the attacker and the defender adopt different learning schemes due to differences in their rationality levels and the information they acquire.
838
838
Autotagging music with conditional restricted Boltzmann machines
This paper describes two applications of conditional restricted Boltzmann machines (CRBMs) to the task of autotagging music. The first consists of training a CRBM to predict tags that a user would apply to a clip of a song based on tags already applied by other users. By learning the relationships between tags, this model is able to pre-process training data to significantly improve the performance of a support vector machine (SVM) autotagging. The second is the use of a discriminative RBM, a type of CRBM, to autotag music. By simultaneously exploiting the relationships among tags and between tags and audio-based features, this model is able to significantly outperform SVMs, logistic regression, and multi-layer perceptrons. In order to be applied to this problem, the discriminative RBM was generalized to the multi-label setting and four different learning algorithms for it were evaluated, the first such in-depth analysis of which we are aware.
839
839
A note on active learning for smooth problems
We show that the disagreement coefficient of certain smooth hypothesis classes is $O(m)$, where $m$ is the dimension of the hypothesis space, thereby answering a question posed in \cite{friedman09}.
840
840
Distributed Learning Policies for Power Allocation in Multiple Access Channels
We analyze the problem of distributed power allocation for orthogonal multiple access channels by considering a continuous non-cooperative game whose strategy space represents the users' distribution of transmission power over the network's channels. When the channels are static, we find that this game admits an exact potential function and this allows us to show that it has a unique equilibrium almost surely. Furthermore, using the game's potential property, we derive a modified version of the replicator dynamics of evolutionary game theory which applies to this continuous game, and we show that if the network's users employ a distributed learning scheme based on these dynamics, then they converge to equilibrium exponentially quickly. On the other hand, a major challenge occurs if the channels do not remain static but fluctuate stochastically over time, following a stationary ergodic process. In that case, the associated ergodic game still admits a unique equilibrium, but the learning analysis becomes much more complicated because the replicator dynamics are no longer deterministic. Nonetheless, by employing results from the theory of stochastic approximation, we show that users still converge to the game's unique equilibrium. Our analysis hinges on a game-theoretical result which is of independent interest: in finite player games which admit a (possibly nonlinear) convex potential function, the replicator dynamics (suitably modified to account for nonlinear payoffs) converge to an eps-neighborhood of an equilibrium at time of order O(log(1/eps)).
841
841
Refining Recency Search Results with User Click Feedback
Traditional machine-learned ranking systems for web search are often trained to capture stationary relevance of documents to queries, which has limited ability to track non-stationary user intention in a timely manner. In recency search, for instance, the relevance of documents to a query on breaking news often changes significantly over time, requiring effective adaptation to user intention. In this paper, we focus on recency search and study a number of algorithms to improve ranking results by leveraging user click feedback. Our contributions are three-fold. First, we use real search sessions collected in a random exploration bucket for \emph{reliable} offline evaluation of these algorithms, which provides an unbiased comparison across algorithms without online bucket tests. Second, we propose a re-ranking approach to improve search results for recency queries using user clicks. Third, our empirical comparison of a dozen algorithms on real-life search data suggests importance of a few algorithmic choices in these applications, including generalization across different query-document pairs, specialization to popular queries, and real-time adaptation of user clicks.
842
842
Pattern-recalling processes in quantum Hopfield networks far from saturation
As a mathematical model of associative memories, the Hopfield model was now well-established and a lot of studies to reveal the pattern-recalling process have been done from various different approaches. As well-known, a single neuron is itself an uncertain, noisy unit with a finite unnegligible error in the input-output relation. To model the situation artificially, a kind of 'heat bath' that surrounds neurons is introduced. The heat bath, which is a source of noise, is specified by the 'temperature'. Several studies concerning the pattern-recalling processes of the Hopfield model governed by the Glauber-dynamics at finite temperature were already reported. However, we might extend the 'thermal noise' to the quantum-mechanical variant. In this paper, in terms of the stochastic process of quantum-mechanical Markov chain Monte Carlo method (the quantum MCMC), we analytically derive macroscopically deterministic equations of order parameters such as 'overlap' in a quantum-mechanical variant of the Hopfield neural networks (let us call "quantum Hopfield model" or "quantum Hopfield networks"). For the case in which non-extensive number $p$ of patterns are embedded via asymmetric Hebbian connections, namely, $p/N \to 0$ for the number of neuron $N \to \infty$ ('far from saturation'), we evaluate the recalling processes for one of the built-in patterns under the influence of quantum-mechanical noise.
843
843
A Linear Classifier Based on Entity Recognition Tools and a Statistical Approach to Method Extraction in the Protein-Protein Interaction Literature
We participated, in the Article Classification and the Interaction Method subtasks (ACT and IMT, respectively) of the Protein-Protein Interaction task of the BioCreative III Challenge. For the ACT, we pursued an extensive testing of available Named Entity Recognition and dictionary tools, and used the most promising ones to extend our Variable Trigonometric Threshold linear classifier. For the IMT, we experimented with a primarily statistical approach, as opposed to employing a deeper natural language processing strategy. Finally, we also studied the benefits of integrating the method extraction approach that we have used for the IMT into the ACT pipeline. For the ACT, our linear article classifier leads to a ranking and classification performance significantly higher than all the reported submissions. For the IMT, our results are comparable to those of other systems, which took very different approaches. For the ACT, we show that the use of named entity recognition tools leads to a substantial improvement in the ranking and classification of articles relevant to protein-protein interaction. Thus, we show that our substantially expanded linear classifier is a very competitive classifier in this domain. Moreover, this classifier produces interpretable surfaces that can be understood as "rules" for human understanding of the classification. In terms of the IMT task, in contrast to other participants, our approach focused on identifying sentences that are likely to bear evidence for the application of a PPI detection method, rather than on classifying a document as relevant to a method. As BioCreative III did not perform an evaluation of the evidence provided by the system, we have conducted a separate assessment; the evaluators agree that our tool is indeed effective in detecting relevant evidence for PPI detection methods.
844
844
Parallel Online Learning
In this work we study parallelization of online learning, a core primitive in machine learning. In a parallel environment all known approaches for parallel online learning lead to delayed updates, where the model is updated using out-of-date information. In the worst case, or when examples are temporally correlated, delay can have a very adverse effect on the learning algorithm. Here, we analyze and present preliminary empirical results on a set of learning architectures based on a feature sharding approach that present various tradeoffs between delay, degree of parallelism, representation power and empirical performance.
845
845
Clustered regression with unknown clusters
We consider a collection of prediction experiments, which are clustered in the sense that groups of experiments ex- hibit similar relationship between the predictor and response variables. The experiment clusters as well as the regres- sion relationships are unknown. The regression relation- ships define the experiment clusters, and in general, the predictor and response variables may not exhibit any clus- tering. We call this prediction problem clustered regres- sion with unknown clusters (CRUC) and in this paper we focus on linear regression. We study and compare several methods for CRUC, demonstrate their applicability to the Yahoo Learning-to-rank Challenge (YLRC) dataset, and in- vestigate an associated mathematical model. CRUC is at the crossroads of many prior works and we study several prediction algorithms with diverse origins: an adaptation of the expectation-maximization algorithm, an approach in- spired by K-means clustering, the singular value threshold- ing approach to matrix rank minimization under quadratic constraints, an adaptation of the Curds and Whey method in multiple regression, and a local regression (LoR) scheme reminiscent of neighborhood methods in collaborative filter- ing. Based on empirical evaluation on the YLRC dataset as well as simulated data, we identify the LoR method as a good practical choice: it yields best or near-best prediction performance at a reasonable computational load, and it is less sensitive to the choice of the algorithm parameter. We also provide some analysis of the LoR method for an asso- ciated mathematical model, which sheds light on optimal parameter choice and prediction performance.
846
846
Handwritten Digit Recognition with a Committee of Deep Neural Nets on GPUs
The competitive MNIST handwritten digit recognition benchmark has a long history of broken records since 1998. The most recent substantial improvement by others dates back 7 years (error rate 0.4%) . Recently we were able to significantly improve this result, using graphics cards to greatly speed up training of simple but deep MLPs, which achieved 0.35%, outperforming all the previous more complex methods. Here we report another substantial improvement: 0.31% obtained using a committee of MLPs.
847
847
Doubly Robust Policy Evaluation and Learning
We study decision making in environments where the reward is only partially observed, but can be modeled as a function of an action and an observed context. This setting, known as contextual bandits, encompasses a wide variety of applications including health-care policy and Internet advertising. A central task is evaluation of a new policy given historic data consisting of contexts, actions and received rewards. The key challenge is that the past data typically does not faithfully represent proportions of actions taken by a new policy. Previous approaches rely either on models of rewards or models of the past policy. The former are plagued by a large bias whereas the latter have a large variance. In this work, we leverage the strength and overcome the weaknesses of the two approaches by applying the doubly robust technique to the problems of policy evaluation and optimization. We prove that this approach yields accurate value estimates when we have either a good (but not necessarily consistent) model of rewards or a good (but not necessarily consistent) model of past policy. Extensive empirical comparison demonstrates that the doubly robust approach uniformly improves over existing techniques, achieving both lower variance in value estimation and better policies. As such, we expect the doubly robust approach to become common practice.
848
848
Classification of Sets using Restricted Boltzmann Machines
We consider the problem of classification when inputs correspond to sets of vectors. This setting occurs in many problems such as the classification of pieces of mail containing several pages, of web sites with several sections or of images that have been pre-segmented into smaller regions. We propose generalizations of the restricted Boltzmann machine (RBM) that are appropriate in this context and explore how to incorporate different assumptions about the relationship between the input sets and the target class within the RBM. In experiments on standard multiple-instance learning datasets, we demonstrate the competitiveness of approaches based on RBMs and apply the proposed variants to the problem of incoming mail classification.
849
849
Distribution-Independent Evolvability of Linear Threshold Functions
Valiant's (2007) model of evolvability models the evolutionary process of acquiring useful functionality as a restricted form of learning from random examples. Linear threshold functions and their various subclasses, such as conjunctions and decision lists, play a fundamental role in learning theory and hence their evolvability has been the primary focus of research on Valiant's framework (2007). One of the main open problems regarding the model is whether conjunctions are evolvable distribution-independently (Feldman and Valiant, 2008). We show that the answer is negative. Our proof is based on a new combinatorial parameter of a concept class that lower-bounds the complexity of learning from correlations. We contrast the lower bound with a proof that linear threshold functions having a non-negligible margin on the data points are evolvable distribution-independently via a simple mutation algorithm. Our algorithm relies on a non-linear loss function being used to select the hypotheses instead of 0-1 loss in Valiant's (2007) original definition. The proof of evolvability requires that the loss function satisfies several mild conditions that are, for example, satisfied by the quadratic loss function studied in several other works (Michael, 2007; Feldman, 2009; Valiant, 2010). An important property of our evolution algorithm is monotonicity, that is the algorithm guarantees evolvability without any decreases in performance. Previously, monotone evolvability was only shown for conjunctions with quadratic loss (Feldman, 2009) or when the distribution on the domain is severely restricted (Michael, 2007; Feldman, 2009; Kanade et al., 2010)
850
850
On Empirical Entropy
We propose a compression-based version of the empirical entropy of a finite string over a finite alphabet. Whereas previously one considers the naked entropy of (possibly higher order) Markov processes, we consider the sum of the description of the random variable involved plus the entropy it induces. We assume only that the distribution involved is computable. To test the new notion we compare the Normalized Information Distance (the similarity metric) with a related measure based on Mutual Information in Shannon's framework. This way the similarities and differences of the last two concepts are exposed.
851
851
Decentralized Online Learning Algorithms for Opportunistic Spectrum Access
The fundamental problem of multiple secondary users contending for opportunistic spectrum access over multiple channels in cognitive radio networks has been formulated recently as a decentralized multi-armed bandit (D-MAB) problem. In a D-MAB problem there are $M$ users and $N$ arms (channels) that each offer i.i.d. stochastic rewards with unknown means so long as they are accessed without collision. The goal is to design a decentralized online learning policy that incurs minimal regret, defined as the difference between the total expected rewards accumulated by a model-aware genie, and that obtained by all users applying the policy. We make two contributions in this paper. First, we consider the setting where the users have a prioritized ranking, such that it is desired for the $K$-th-ranked user to learn to access the arm offering the $K$-th highest mean reward. For this problem, we present the first distributed policy that yields regret that is uniformly logarithmic over time without requiring any prior assumption about the mean rewards. Second, we consider the case when a fair access policy is required, i.e., it is desired for all users to experience the same mean reward. For this problem, we present a distributed policy that yields order-optimal regret scaling with respect to the number of users and arms, better than previously proposed policies in the literature. Both of our distributed policies make use of an innovative modification of the well known UCB1 policy for the classic multi-armed bandit problem that allows a single user to learn how to play the arm that yields the $K$-th largest mean reward.
852
852
Gaussian Robust Classification
Supervised learning is all about the ability to generalize knowledge. Specifically, the goal of the learning is to train a classifier using training data, in such a way that it will be capable of classifying new unseen data correctly. In order to acheive this goal, it is important to carefully design the learner, so it will not overfit the training data. The later can is done usually by adding a regularization term. The statistical learning theory explains the success of this method by claiming that it restricts the complexity of the learned model. This explanation, however, is rather abstract and does not have a geometric intuition. The generalization error of a classifier may be thought of as correlated with its robustness to perturbations of the data: a classifier that copes with disturbance is expected to generalize well. Indeed, Xu et al. [2009] have shown that the SVM formulation is equivalent to a robust optimization (RO) formulation, in which an adversary displaces the training and testing points within a ball of pre-determined radius. In this work we explore a different kind of robustness, namely changing each data point with a Gaussian cloud centered at the sample. Loss is evaluated as the expectation of an underlying loss function on the cloud. This setup fits the fact that in many applications, the data is sampled along with noise. We develop an RO framework, in which the adversary chooses the covariance of the noise. In our algorithm named GURU, the tuning parameter is a spectral bound on the noise, thus it can be estimated using physical or applicative considerations. Our experiments show that this framework performs as well as SVM and even slightly better in some cases. Generalizations for Mercer kernels and for the multiclass case are presented as well. We also show that our framework may be further generalized, using the technique of convex perspective functions.
853
853
Meaningful Clustered Forest: an Automatic and Robust Clustering Algorithm
We propose a new clustering technique that can be regarded as a numerical method to compute the proximity gestalt. The method analyzes edge length statistics in the MST of the dataset and provides an a contrario cluster detection criterion. The approach is fully parametric on the chosen distance and can detect arbitrarily shaped clusters. The method is also automatic, in the sense that only a single parameter is left to the user. This parameter has an intuitive interpretation as it controls the expected number of false detections. We show that the iterative application of our method can (1) provide robustness to noise and (2) solve a masking phenomenon in which a highly populated and salient cluster dominates the scene and inhibits the detection of less-populated, but still salient, clusters.
854
854
Online and Batch Learning Algorithms for Data with Missing Features
We introduce new online and batch algorithms that are robust to data with missing features, a situation that arises in many practical applications. In the online setup, we allow for the comparison hypothesis to change as a function of the subset of features that is observed on any given round, extending the standard setting where the comparison hypothesis is fixed throughout. In the batch setup, we present a convex relation of a non-convex problem to jointly estimate an imputation function, used to fill in the values of missing features, along with the classification hypothesis. We prove regret bounds in the online setting and Rademacher complexity bounds for the batch i.i.d. setting. The algorithms are tested on several UCI datasets, showing superior performance over baselines.
855
855
Efficient First Order Methods for Linear Composite Regularizers
A wide class of regularization problems in machine learning and statistics employ a regularization term which is obtained by composing a simple convex function \omega with a linear transformation. This setting includes Group Lasso methods, the Fused Lasso and other total variation methods, multi-task learning methods and many more. In this paper, we present a general approach for computing the proximity operator of this class of regularizers, under the assumption that the proximity operator of the function \omega is known in advance. Our approach builds on a recent line of research on optimal first order optimization methods and uses fixed point iterations for numerically computing the proximity operator. It is more general than current approaches and, as we show with numerical simulations, computationally more efficient than available first order methods which do not achieve the optimal rate. In particular, our method outperforms state of the art O(1/T) methods for overlapping Group Lasso and matches optimal O(1/T^2) methods for the Fused Lasso and tree structured Group Lasso.
856
856
Plug-in Approach to Active Learning
We present a new active learning algorithm based on nonparametric estimators of the regression function. Our investigation provides probabilistic bounds for the rates of convergence of the generalization error achievable by proposed method over a broad class of underlying distributions. We also prove minimax lower bounds which show that the obtained rates are almost tight.
857
857
Dimension-free tail inequalities for sums of random matrices
We derive exponential tail inequalities for sums of random matrices with no dependence on the explicit matrix dimensions. These are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the dimension is large or infinite. Some applications to principal component analysis and approximate matrix multiplication are given to illustrate the utility of the new bounds.
858
858
Convex and Network Flow Optimization for Structured Sparsity
We consider a class of learning problems regularized by a structured sparsity-inducing norm defined as the sum of l_2- or l_infinity-norms over groups of variables. Whereas much effort has been put in developing fast optimization techniques when the groups are disjoint or embedded in a hierarchy, we address here the case of general overlapping groups. To this end, we present two different strategies: On the one hand, we show that the proximal operator associated with a sum of l_infinity-norms can be computed exactly in polynomial time by solving a quadratic min-cost flow problem, allowing the use of accelerated proximal gradient methods. On the other hand, we use proximal splitting techniques, and address an equivalent formulation with non-overlapping groups, but in higher dimension and with additional constraints. We propose efficient and scalable algorithms exploiting these two strategies, which are significantly faster than alternative approaches. We illustrate these methods with several problems such as CUR matrix factorization, multi-task learning of tree-structured dictionaries, background subtraction in video sequences, image denoising with wavelets, and topographic dictionary learning of natural image patches.
859
859
Adaptive Evolutionary Clustering
In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naive estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.
860
860
Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression
Generalized Linear Models (GLMs) and Single Index Models (SIMs) provide powerful generalizations of linear regression, where the target variable is assumed to be a (possibly unknown) 1-dimensional function of a linear predictor. In general, these problems entail non-convex estimation procedures, and, in practice, iterative local search heuristics are often used. Kalai and Sastry (2009) recently provided the first provably efficient method for learning SIMs and GLMs, under the assumptions that the data are in fact generated under a GLM and under certain monotonicity and Lipschitz constraints. However, to obtain provable performance, the method requires a fresh sample every iteration. In this paper, we provide algorithms for learning GLMs and SIMs, which are both computationally and statistically efficient. We also provide an empirical study, demonstrating their feasibility in practice.
861
861
PAC learnability versus VC dimension: a footnote to a basic result of statistical learning
A fundamental result of statistical learnig theory states that a concept class is PAC learnable if and only if it is a uniform Glivenko-Cantelli class if and only if the VC dimension of the class is finite. However, the theorem is only valid under special assumptions of measurability of the class, in which case the PAC learnability even becomes consistent. Otherwise, there is a classical example, constructed under the Continuum Hypothesis by Dudley and Durst and further adapted by Blumer, Ehrenfeucht, Haussler, and Warmuth, of a concept class of VC dimension one which is neither uniform Glivenko-Cantelli nor consistently PAC learnable. We show that, rather surprisingly, under an additional set-theoretic hypothesis which is much milder than the Continuum Hypothesis (Martin's Axiom), PAC learnability is equivalent to finite VC dimension for every concept class.
862
862
Hypothesize and Bound: A Computational Focus of Attention Mechanism for Simultaneous N-D Segmentation, Pose Estimation and Classification Using Shape Priors
Given the ever increasing bandwidth of the visual information available to many intelligent systems, it is becoming essential to endow them with a sense of what is worthwhile their attention and what can be safely disregarded. This article presents a general mathematical framework to efficiently allocate the available computational resources to process the parts of the input that are relevant to solve a given perceptual problem. By this we mean to find the hypothesis H (i.e., the state of the world) that maximizes a function L(H), representing how well each hypothesis "explains" the input. Given the large bandwidth of the sensory input, fully evaluating L(H) for each hypothesis H is computationally infeasible (e.g., because it would imply checking a large number of pixels). To address this problem we propose a mathematical framework with two key ingredients. The first one is a Bounding Mechanism (BM) to compute lower and upper bounds of L(H), for a given computational budget. These bounds are much cheaper to compute than L(H) itself, can be refined at any time by increasing the budget allocated to a hypothesis, and are frequently enough to discard a hypothesis. To compute these bounds, we develop a novel theory of shapes and shape priors. The second ingredient is a Focus of Attention Mechanism (FoAM) to select which hypothesis' bounds should be refined next, with the goal of discarding non-optimal hypotheses with the least amount of computation. The proposed framework: 1) is very efficient since most hypotheses are discarded with minimal computation; 2) is parallelizable; 3) is guaranteed to find the globally optimal hypothesis; and 4) its running time depends on the problem at hand, not on the bandwidth of the input. We instantiate the proposed framework for the problem of simultaneously estimating the class, pose, and a noiseless version of a 2D shape in a 2D image.
863
863
Cluster Forests
With inspiration from Random Forests (RF) in the context of classification, a new clustering ensemble method---Cluster Forests (CF) is proposed. Geometrically, CF randomly probes a high-dimensional data cloud to obtain "good local clusterings" and then aggregates via spectral clustering to obtain cluster assignments for the whole dataset. The search for good local clusterings is guided by a cluster quality measure kappa. CF progressively improves each local clustering in a fashion that resembles the tree growth in RF. Empirical studies on several real-world datasets under two different performance metrics show that CF compares favorably to its competitors. Theoretical analysis reveals that the kappa measure makes it possible to grow the local clustering in a desirable way---it is "noise-resistant". A closed-form expression is obtained for the mis-clustering rate of spectral clustering under a perturbation model, which yields new insights into some aspects of spectral clustering.
864
864
Signal Classification for Acoustic Neutrino Detection
This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of one percent is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.
865
865
A sufficient condition on monotonic increase of the number of nonzero entry in the optimizer of L1 norm penalized least-square problem
The $\ell$-1 norm based optimization is widely used in signal processing, especially in recent compressed sensing theory. This paper studies the solution path of the $\ell$-1 norm penalized least-square problem, whose constrained form is known as Least Absolute Shrinkage and Selection Operator (LASSO). A solution path is the set of all the optimizers with respect to the evolution of the hyperparameter (Lagrange multiplier). The study of the solution path is of great significance in viewing and understanding the profile of the tradeoff between the approximation and regularization terms. If the solution path of a given problem is known, it can help us to find the optimal hyperparameter under a given criterion such as the Akaike Information Criterion. In this paper we present a sufficient condition on $\ell$-1 norm penalized least-square problem. Under this sufficient condition, the number of nonzero entries in the optimizer or solution vector increases monotonically when the hyperparameter decreases. We also generalize the result to the often used total variation case, where the $\ell$-1 norm is taken over the first order derivative of the solution vector. We prove that the proposed condition has intrinsic connections with the condition given by Donoho, et al \cite{Donoho08} and the positive cone condition by Efron {\it el al} \cite{Efron04}. However, the proposed condition does not need to assume the sparsity level of the signal as required by Donoho et al's condition, and is easier to verify than Efron, et al's positive cone condition when being used for practical applications.
866
866
Understanding Exhaustive Pattern Learning
Pattern learning in an important problem in Natural Language Processing (NLP). Some exhaustive pattern learning (EPL) methods (Bod, 1992) were proved to be flawed (Johnson, 2002), while similar algorithms (Och and Ney, 2004) showed great advantages on other tasks, such as machine translation. In this article, we first formalize EPL, and then show that the probability given by an EPL model is constant-factor approximation of the probability given by an ensemble method that integrates exponential number of models obtained with various segmentations of the training data. This work for the first time provides theoretical justification for the widely used EPL algorithm in NLP, which was previously viewed as a flawed heuristic method. Better understanding of EPL may lead to improved pattern learning algorithms in future.
867
867
Intent Inference and Syntactic Tracking with GMTI Measurements
In conventional target tracking systems, human operators use the estimated target tracks to make higher level inference of the target behaviour/intent. This paper develops syntactic filtering algorithms that assist human operators by extracting spatial patterns from target tracks to identify suspicious/anomalous spatial trajectories. The targets' spatial trajectories are modeled by a stochastic context free grammar (SCFG) and a switched mode state space model. Bayesian filtering algorithms for stochastic context free grammars are presented for extracting the syntactic structure and illustrated for a ground moving target indicator (GMTI) radar example. The performance of the algorithms is tested with the experimental data collected using DRDC Ottawa's X-band Wideband Experimental Airborne Radar (XWEAR).
868
868
Robust Clustering Using Outlier-Sparsity Regularization
Notwithstanding the popularity of conventional clustering algorithms such as K-means and probabilistic clustering, their clustering results are sensitive to the presence of outliers in the data. Even a few outliers can compromise the ability of these algorithms to identify meaningful hidden structures rendering their outcome unreliable. This paper develops robust clustering algorithms that not only aim to cluster the data, but also to identify the outliers. The novel approaches rely on the infrequent presence of outliers in the data which translates to sparsity in a judiciously chosen domain. Capitalizing on the sparsity in the outlier domain, outlier-aware robust K-means and probabilistic clustering approaches are proposed. Their novelty lies on identifying outliers while effecting sparsity in the outlier domain through carefully chosen regularization. A block coordinate descent approach is developed to obtain iterative algorithms with convergence guarantees and small excess computational complexity with respect to their non-robust counterparts. Kernelized versions of the robust clustering algorithms are also developed to efficiently handle high-dimensional data, identify nonlinearly separable clusters, or even cluster objects that are not represented by vectors. Numerical tests on both synthetic and real datasets validate the performance and applicability of the novel algorithms.
869
869
Compressive Network Analysis
Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets.
870
870
Temporal Second Difference Traces
Q-learning is a reliable but inefficient off-policy temporal-difference method, backing up reward only one step at a time. Replacing traces, using a recency heuristic, are more efficient but less reliable. In this work, we introduce model-free, off-policy temporal difference methods that make better use of experience than Watkins' Q(\lambda). We introduce both Optimistic Q(\lambda) and the temporal second difference trace (TSDT). TSDT is particularly powerful in deterministic domains. TSDT uses neither recency nor frequency heuristics, storing (s,a,r,s',\delta) so that off-policy updates can be performed after apparently suboptimal actions have been taken. There are additional advantages when using state abstraction, as in MAXQ. We demonstrate that TSDT does significantly better than both Q-learning and Watkins' Q(\lambda) in a deterministic cliff-walking domain. Results in a noisy cliff-walking domain are less advantageous for TSDT, but demonstrate the efficacy of Optimistic Q(\lambda), a replacing trace with some of the advantages of TSDT.
871
871
Clustering Partially Observed Graphs via Convex Optimization
This paper considers the problem of clustering a partially observed unweighted graph---i.e., one where for some node pairs we know there is an edge between them, for some others we know there is no edge, and for the remaining we do not know whether or not there is an edge. We want to organize the nodes into disjoint clusters so that there is relatively dense (observed) connectivity within clusters, and sparse across clusters. We take a novel yet natural approach to this problem, by focusing on finding the clustering that minimizes the number of "disagreements"---i.e., the sum of the number of (observed) missing edges within clusters, and (observed) present edges across clusters. Our algorithm uses convex optimization; its basis is a reduction of disagreement minimization to the problem of recovering an (unknown) low-rank matrix and an (unknown) sparse matrix from their partially observed sum. We evaluate the performance of our algorithm on the classical Planted Partition/Stochastic Block Model. Our main theorem provides sufficient conditions for the success of our algorithm as a function of the minimum cluster size, edge density and observation probability; in particular, the results characterize the tradeoff between the observation probability and the edge density gap. When there are a constant number of clusters of equal size, our results are optimal up to logarithmic factors.
872
872
Reducing Commitment to Tasks with Off-Policy Hierarchical Reinforcement Learning
In experimenting with off-policy temporal difference (TD) methods in hierarchical reinforcement learning (HRL) systems, we have observed unwanted on-policy learning under reproducible conditions. Here we present modifications to several TD methods that prevent unintentional on-policy learning from occurring. These modifications create a tension between exploration and learning. Traditional TD methods require commitment to finishing subtasks without exploration in order to update Q-values for early actions with high probability. One-step intra-option learning and temporal second difference traces (TSDT) do not suffer from this limitation. We demonstrate that our HRL system is efficient without commitment to completion of subtasks in a cliff-walking domain, contrary to a widespread claim in the literature that it is critical for efficiency of learning. Furthermore, decreasing commitment as exploration progresses is shown to improve both online performance and the resultant policy in the taxicab domain, opening a new avenue for research into when it is more beneficial to continue with the current subtask or to replan.
873
873
On Combining Machine Learning with Decision Making
We present a new application and covering number bound for the framework of "Machine Learning with Operational Costs (MLOC)," which is an exploratory form of decision theory. The MLOC framework incorporates knowledge about how a predictive model will be used for a subsequent task, thus combining machine learning with the decision that is made afterwards. In this work, we use the MLOC framework to study a problem that has implications for power grid reliability and maintenance, called the Machine Learning and Traveling Repairman Problem ML&TRP. The goal of the ML&TRP is to determine a route for a "repair crew," which repairs nodes on a graph. The repair crew aims to minimize the cost of failures at the nodes, but as in many real situations, the failure probabilities are not known and must be estimated. The MLOC framework allows us to understand how this uncertainty influences the repair route. We also present new covering number generalization bounds for the MLOC framework.
874
874
Online Learning: Stochastic and Constrained Adversaries
Learning theory has largely focused on two main learning scenarios. The first is the classical statistical setting where instances are drawn i.i.d. from a fixed distribution and the second scenario is the online learning, completely adversarial scenario where adversary at every time step picks the worst instance to provide the learner with. It can be argued that in the real world neither of these assumptions are reasonable. It is therefore important to study problems with a range of assumptions on data. Unfortunately, theoretical results in this area are scarce, possibly due to absence of general tools for analysis. Focusing on the regret formulation, we define the minimax value of a game where the adversary is restricted in his moves. The framework captures stochastic and non-stochastic assumptions on data. Building on the sequential symmetrization approach, we define a notion of distribution-dependent Rademacher complexity for the spectrum of problems ranging from i.i.d. to worst-case. The bounds let us immediately deduce variation-type bounds. We then consider the i.i.d. adversary and show equivalence of online and batch learnability. In the supervised setting, we consider various hybrid assumptions on the way that x and y variables are chosen. Finally, we consider smoothed learning problems and show that half-spaces are online learnable in the smoothed model. In fact, exponentially small noise added to adversary's decisions turns this problem with infinite Littlestone's dimension into a learnable problem.
875
875
Attacking and Defending Covert Channels and Behavioral Models
In this paper we present methods for attacking and defending $k$-gram statistical analysis techniques that are used, for example, in network traffic analysis and covert channel detection. The main new result is our demonstration of how to use a behavior's or process' $k$-order statistics to build a stochastic process that has those same $k$-order stationary statistics but possesses different, deliberately designed, $(k+1)$-order statistics if desired. Such a model realizes a "complexification" of the process or behavior which a defender can use to monitor whether an attacker is shaping the behavior. By deliberately introducing designed $(k+1)$-order behaviors, the defender can check to see if those behaviors are present in the data. We also develop constructs for source codes that respect the $k$-order statistics of a process while encoding covert information. One fundamental consequence of these results is that certain types of behavior analyses techniques come down to an {\em arms race} in the sense that the advantage goes to the party that has more computing resources applied to the problem.
876
876
File Transfer Application For Sharing Femto Access
In wireless access network optimization, today's main challenges reside in traffic offload and in the improvement of both capacity and coverage networks. The operators are interested in solving their localized coverage and capacity problems in areas where the macro network signal is not able to serve the demand for mobile data. Thus, the major issue for operators is to find the best solution at reasonable expanses. The femto cell seems to be the answer to this problematic. In this work (This work is supported by the COMET project AWARE. http://www.ftw.at/news/project-start-for-aware-ftw), we focus on the problem of sharing femto access between a same mobile operator's customers. This problem can be modeled as a game where service requesters customers (SRCs) and service providers customers (SPCs) are the players. This work addresses the sharing femto access problem considering only one SPC using game theory tools. We consider that SRCs are static and have some similar and regular connection behavior. We also note that the SPC and each SRC have a software embedded respectively on its femto access, user equipment (UE). After each connection requested by a SRC, its software will learn the strategy increasing its gain knowing that no information about the other SRCs strategies is given. The following article presents a distributed learning algorithm with incomplete information running in SRCs software. We will then answer the following questions for a game with $N$ SRCs and one SPC: how many connections are necessary for each SRC in order to learn the strategy maximizing its gain? Does this algorithm converge to a stable state? If yes, does this state a Nash Equilibrium and is there any way to optimize the learning process duration time triggered by SRCs software?
877
877
Learning Undirected Graphical Models with Structure Penalty
In undirected graphical models, learning the graph structure and learning the functions that relate the predictive variables (features) to the responses given the structure are two topics that have been widely investigated in machine learning and statistics. Learning graphical models in two stages will have problems because graph structure may change after considering the features. The main contribution of this paper is the proposed method that learns the graph structure and functions on the graph at the same time. General graphical models with binary outcomes conditioned on predictive variables are proved to be equivalent to multivariate Bernoulli model. The reparameterization of the potential functions in graphical model by conditional log odds ratios in multivariate Bernoulli model offers advantage in the representation of the conditional independence structure in the model. Additionally, we impose a structure penalty on groups of conditional log odds ratios to learn the graph structure. These groups of functions are designed with overlaps to enforce hierarchical function selection. In this way, we are able to shrink higher order interactions to obtain a sparse graph structure. Simulation studies show that the method is able to recover the graph structure. The analysis of county data from Census Bureau gives interesting relations between unemployment rate, crime and others discovered by the model.
878
878
On Optimality of Greedy Policy for a Class of Standard Reward Function of Restless Multi-armed Bandit Problem
In this paper,we consider the restless bandit problem, which is one of the most well-studied generalizations of the celebrated stochastic multi-armed bandit problem in decision theory. However, it is known be PSPACE-Hard to approximate to any non-trivial factor. Thus the optimality is very difficult to obtain due to its high complexity. A natural method is to obtain the greedy policy considering its stability and simplicity. However, the greedy policy will result in the optimality loss for its intrinsic myopic behavior generally. In this paper, by analyzing one class of so-called standard reward function, we establish the closed-form condition about the discounted factor \beta such that the optimality of the greedy policy is guaranteed under the discounted expected reward criterion, especially, the condition \beta = 1 indicating the optimality of the greedy policy under the average accumulative reward criterion. Thus, the standard form of reward function can easily be used to judge the optimality of the greedy policy without any complicated calculation. Some examples in cognitive radio networks are presented to verify the effectiveness of the mathematical result in judging the optimality of the greedy policy.
879
879
Notes on a New Philosophy of Empirical Science
This book presents a methodology and philosophy of empirical science based on large scale lossless data compression. In this view a theory is scientific if it can be used to build a data compression program, and it is valuable if it can compress a standard benchmark database to a small size, taking into account the length of the compressor itself. This methodology therefore includes an Occam principle as well as a solution to the problem of demarcation. Because of the fundamental difficulty of lossless compression, this type of research must be empirical in nature: compression can only be achieved by discovering and characterizing empirical regularities in the data. Because of this, the philosophy provides a way to reformulate fields such as computer vision and computational linguistics as empirical sciences: the former by attempting to compress databases of natural images, the latter by attempting to compress large text databases. The book argues that the rigor and objectivity of the compression principle should set the stage for systematic progress in these fields. The argument is especially strong in the context of computer vision, which is plagued by chronic problems of evaluation. The book also considers the field of machine learning. Here the traditional approach requires that the models proposed to solve learning problems be extremely simple, in order to avoid overfitting. However, the world may contain intrinsically complex phenomena, which would require complex models to understand. The compression philosophy can justify complex models because of the large quantity of data being modeled (if the target database is 100 Gb, it is easy to justify a 10 Mb model). The complex models and abstractions learned on the basis of the raw data (images, language, etc) can then be reused to solve any specific learning problem, such as face recognition or machine translation.
880
880
Mean-Variance Optimization in Markov Decision Processes
We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudopolynomial exact and approximation algorithms.
881
881
Learning high-dimensional directed acyclic graphs with latent and selection variables
We consider the problem of learning causal information between random variables in directed acyclic graphs (DAGs) when allowing arbitrarily many latent and selection variables. The FCI (Fast Causal Inference) algorithm has been explicitly designed to infer conditional independence and causal information in such settings. However, FCI is computationally infeasible for large graphs. We therefore propose the new RFCI algorithm, which is much faster than FCI. In some situations the output of RFCI is slightly less informative, in particular with respect to conditional independence information. However, we prove that any causal information in the output of RFCI is correct in the asymptotic limit. We also define a class of graphs on which the outputs of FCI and RFCI are identical. We prove consistency of FCI and RFCI in sparse high-dimensional settings, and demonstrate in simulations that the estimation performances of the algorithms are very similar. All software is implemented in the R-package pcalg.
882
882
Preference elicitation and inverse reinforcement learning
We state the problem of inverse reinforcement learning in terms of preference elicitation, resulting in a principled (Bayesian) statistical formulation. This generalises previous work on Bayesian inverse reinforcement learning and allows us to obtain a posterior distribution on the agent's preferences, policy and optionally, the obtained reward sequence, from observations. We examine the relation of the resulting approach to other statistical methods for inverse reinforcement learning via analysis and experimental results. We show that preferences can be determined accurately, even if the observed agent's policy is sub-optimal with respect to its own preferences. In that case, significantly improved policies with respect to the agent's preferences are obtained, compared to both other methods and to the performance of the demonstrated policy.
883
883
Rapid Learning with Stochastic Focus of Attention
We present a method to stop the evaluation of a decision making process when the result of the full evaluation is obvious. This trait is highly desirable for online margin-based machine learning algorithms where a classifier traditionally evaluates all the features for every example. We observe that some examples are easier to classify than others, a phenomenon which is characterized by the event when most of the features agree on the class of an example. By stopping the feature evaluation when encountering an easy to classify example, the learning algorithm can achieve substantial gains in computation. Our method provides a natural attention mechanism for learning algorithms. By modifying Pegasos, a margin-based online learning algorithm, to include our attentive method we lower the number of attributes computed from $n$ to an average of $O(\sqrt{n})$ features without loss in prediction accuracy. We demonstrate the effectiveness of Attentive Pegasos on MNIST data.
884
884
Suboptimal Solution Path Algorithm for Support Vector Machine
We consider a suboptimal solution path algorithm for the Support Vector Machine. The solution path algorithm is an effective tool for solving a sequence of a parametrized optimization problems in machine learning. The path of the solutions provided by this algorithm are very accurate and they satisfy the optimality conditions more strictly than other SVM optimization algorithms. In many machine learning application, however, this strict optimality is often unnecessary, and it adversely affects the computational efficiency. Our algorithm can generate the path of suboptimal solutions within an arbitrary user-specified tolerance level. It allows us to control the trade-off between the accuracy of the solution and the computational cost. Moreover, We also show that our suboptimal solutions can be interpreted as the solution of a \emph{perturbed optimization problem} from the original one. We provide some theoretical analyses of our algorithm based on this novel interpretation. The experimental results also demonstrate the effectiveness of our algorithm.
885
885
Pruning nearest neighbor cluster trees
Nearest neighbor (k-NN) graphs are widely used in machine learning and data mining applications, and our aim is to better understand what they reveal about the cluster structure of the unknown underlying distribution of points. Moreover, is it possible to identify spurious structures that might arise due to sampling variability? Our first contribution is a statistical analysis that reveals how certain subgraphs of a k-NN graph form a consistent estimator of the cluster tree of the underlying distribution of points. Our second and perhaps most important contribution is the following finite sample guarantee. We carefully work out the tradeoff between aggressive and conservative pruning and are able to guarantee the removal of all spurious cluster structures at all levels of the tree while at the same time guaranteeing the recovery of salient clusters. This is the first such finite sample result in the context of clustering.
886
886
Domain Adaptation: Overfitting and Small Sample Statistics
We study the prevalent problem when a test distribution differs from the training distribution. We consider a setting where our training set consists of a small number of sample domains, but where we have many samples in each domain. Our goal is to generalize to a new domain. For example, we may want to learn a similarity function using only certain classes of objects, but we desire that this similarity function be applicable to object classes not present in our training sample (e.g. we might seek to learn that "dogs are similar to dogs" even though images of dogs were absent from our training set). Our theoretical analysis shows that we can select many more features than domains while avoiding overfitting by utilizing data-dependent variance properties. We present a greedy feature selection algorithm based on using T-statistics. Our experiments validate this theory showing that our T-statistic based greedy feature selection is more robust at avoiding overfitting than the classical greedy procedure.
887
887
Rapid Feature Learning with Stacked Linear Denoisers
We investigate unsupervised pre-training of deep architectures as feature generators for "shallow" classifiers. Stacked Denoising Autoencoders (SdA), when used as feature pre-processing tools for SVM classification, can lead to significant improvements in accuracy - however, at the price of a substantial increase in computational cost. In this paper we create a simple algorithm which mimics the layer by layer training of SdAs. However, in contrast to SdAs, our algorithm requires no training through gradient descent as the parameters can be computed in closed-form. It can be implemented in less than 20 lines of MATLABTMand reduces the computation time from several hours to mere seconds. We show that our feature transformation reliably improves the results of SVM classification significantly on all our data sets - often outperforming SdAs and even deep neural networks in three out of four deep learning benchmarks.
888
888
Adaptively Learning the Crowd Kernel
We introduce an algorithm that, given n objects, learns a similarity matrix over all n^2 pairs, from crowdsourced data alone. The algorithm samples responses to adaptively chosen triplet-based relative-similarity queries. Each query has the form "is object 'a' more similar to 'b' or to 'c'?" and is chosen to be maximally informative given the preceding responses. The output is an embedding of the objects into Euclidean space (like MDS); we refer to this as the "crowd kernel." SVMs reveal that the crowd kernel captures prominent and subtle features across a number of domains, such as "is striped" among neckties and "vowel vs. consonant" among letters.
889
889
Interpreting Graph Cuts as a Max-Product Algorithm
The maximum a posteriori (MAP) configuration of binary variable models with submodular graph-structured energy functions can be found efficiently and exactly by graph cuts. Max-product belief propagation (MP) has been shown to be suboptimal on this class of energy functions by a canonical counterexample where MP converges to a suboptimal fixed point (Kulesza & Pereira, 2008). In this work, we show that under a particular scheduling and damping scheme, MP is equivalent to graph cuts, and thus optimal. We explain the apparent contradiction by showing that with proper scheduling and damping, MP always converges to an optimal fixed point. Thus, the canonical counterexample only shows the suboptimality of MP with a particular suboptimal choice of schedule and damping. With proper choices, MP is optimal.
890
890
Self-configuration from a Machine-Learning Perspective
The goal of machine learning is to provide solutions which are trained by data or by experience coming from the environment. Many training algorithms exist and some brilliant successes were achieved. But even in structured environments for machine learning (e.g. data mining or board games), most applications beyond the level of toy problems need careful hand-tuning or human ingenuity (i.e. detection of interesting patterns) or both. We discuss several aspects how self-configuration can help to alleviate these problems. One aspect is the self-configuration by tuning of algorithms, where recent advances have been made in the area of SPO (Sequen- tial Parameter Optimization). Another aspect is the self-configuration by pattern detection or feature construction. Forming multiple features (e.g. random boolean functions) and using algorithms (e.g. random forests) which easily digest many fea- tures can largely increase learning speed. However, a full-fledged theory of feature construction is not yet available and forms a current barrier in machine learning. We discuss several ideas for systematic inclusion of feature construction. This may lead to partly self-configuring machine learning solutions which show robustness, flexibility, and fast learning in potentially changing environments.
891
891
Generalized Boosting Algorithms for Convex Optimization
Boosting is a popular way to derive powerful learners from simpler hypothesis classes. Following previous work (Mason et al., 1999; Friedman, 2000) on general boosting frameworks, we analyze gradient-based descent algorithms for boosting with respect to any convex objective and introduce a new measure of weak learner performance into this setting which generalizes existing work. We present the weak to strong learning guarantees for the existing gradient boosting work for strongly-smooth, strongly-convex objectives under this new measure of performance, and also demonstrate that this work fails for non-smooth objectives. To address this issue, we present new algorithms which extend this boosting approach to arbitrary convex loss functions and give corresponding weak to strong convergence results. In addition, we demonstrate experimental results that support our analysis and demonstrate the need for the new algorithms we present.
892
892
A Framework for Optimization under Limited Information
In many real world problems, optimization decisions have to be made with limited information. The decision maker may have no a priori or posteriori data about the often nonconvex objective function except from on a limited number of points that are obtained over time through costly observations. This paper presents an optimization framework that takes into account the information collection (observation), estimation (regression), and optimization (maximization) aspects in a holistic and structured manner. Explicitly quantifying the information acquired at each optimization step using the entropy measure from information theory, the (nonconvex) objective function to be optimized (maximized) is modeled and estimated by adopting a Bayesian approach and using Gaussian processes as a state-of-the-art regression method. The resulting iterative scheme allows the decision maker to solve the problem by expressing preferences for each aspect quantitatively and concurrently.
893
893
Dual Control with Active Learning using Gaussian Process Regression
In many real world problems, control decisions have to be made with limited information. The controller may have no a priori (or even posteriori) data on the nonlinear system, except from a limited number of points that are obtained over time. This is either due to high cost of observation or the highly non-stationary nature of the system. The resulting conflict between information collection (identification, exploration) and control (optimization, exploitation) necessitates an active learning approach for iteratively selecting the control actions which concurrently provide the data points for system identification. This paper presents a dual control approach where the information acquired at each control step is quantified using the entropy measure from information theory and serves as the training input to a state-of-the-art Gaussian process regression (Bayesian learning) method. The explicit quantification of the information obtained from each data point allows for iterative optimization of both identification and control objectives. The approach developed is illustrated with two examples: control of logistic map as a chaotic system and position control of a cart with inverted pendulum.
894
894
Data-Distributed Weighted Majority and Online Mirror Descent
In this paper, we focus on the question of the extent to which online learning can benefit from distributed computing. We focus on the setting in which $N$ agents online-learn cooperatively, where each agent only has access to its own data. We propose a generic data-distributed online learning meta-algorithm. We then introduce the Distributed Weighted Majority and Distributed Online Mirror Descent algorithms, as special cases. We show, using both theoretical analysis and experiments, that compared to a single agent: given the same computation time, these distributed algorithms achieve smaller generalization errors; and given the same generalization errors, they can be $N$ times faster.
895
895
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered.
896
896
A Maximal Large Deviation Inequality for Sub-Gaussian Variables
In this short note we prove a maximal concentration lemma for sub-Gaussian random variables stating that for independent sub-Gaussian random variables we have \[P<(\max_{1\le i\le N}S_{i}>\epsilon>) \le\exp<(-\frac{1}{N^2}\sum_{i=1}^{N}\frac{\epsilon^{2}}{2\sigma_{i}^{2}}>), \] where $S_i$ is the sum of $i$ zero mean independent sub-Gaussian random variables and $\sigma_i$ is the variance of the $i$th random variable.
897
897
A Note on the Entropy/Influence Conjecture
The entropy/influence conjecture, raised by Friedgut and Kalai in 1996, seeks to relate two different measures of concentration of the Fourier coefficients of a Boolean function. Roughly saying, it claims that if the Fourier spectrum is "smeared out", then the Fourier coefficients are concentrated on "high" levels. In this note we generalize the conjecture to biased product measures on the discrete cube, and prove a variant of the conjecture for functions with an extremely low Fourier weight on the "high" levels.
898
898
Semantic Vector Machines
We first present our work in machine translation, during which we used aligned sentences to train a neural network to embed n-grams of different languages into an $d$-dimensional space, such that n-grams that are the translation of each other are close with respect to some metric. Good n-grams to n-grams translation results were achieved, but full sentences translation is still problematic. We realized that learning semantics of sentences and documents was the key for solving a lot of natural language processing problems, and thus moved to the second part of our work: sentence compression. We introduce a flexible neural network architecture for learning embeddings of words and sentences that extract their semantics, propose an efficient implementation in the Torch framework and present embedding results comparable to the ones obtained with classical neural language models, while being more powerful.
899
899
Feature Selection for MAUC-Oriented Classification Systems
Feature selection is an important pre-processing step for many pattern classification tasks. Traditionally, feature selection methods are designed to obtain a feature subset that can lead to high classification accuracy. However, classification accuracy has recently been shown to be an inappropriate performance metric of classification systems in many cases. Instead, the Area Under the receiver operating characteristic Curve (AUC) and its multi-class extension, MAUC, have been proved to be better alternatives. Hence, the target of classification system design is gradually shifting from seeking a system with the maximum classification accuracy to obtaining a system with the maximum AUC/MAUC. Previous investigations have shown that traditional feature selection methods need to be modified to cope with this new objective. These methods most often are restricted to binary classification problems only. In this study, a filter feature selection method, namely MAUC Decomposition based Feature Selection (MDFS), is proposed for multi-class classification problems. To the best of our knowledge, MDFS is the first method specifically designed to select features for building classification systems with maximum MAUC. Extensive empirical results demonstrate the advantage of MDFS over several compared feature selection methods.