CShorten commited on
Commit
1be805f
·
1 Parent(s): 3b0ea8f

Delete ArXiv-Tweets-from-AK.csv

Browse files
Files changed (1) hide show
  1. ArXiv-Tweets-from-AK.csv +0 -620
ArXiv-Tweets-from-AK.csv DELETED
@@ -1,620 +0,0 @@
1
- ,id,tweet_text,paper_reference
2
- 0,1546707909748342784,"High-resource Language-specific Training for Multilingual Neural Machine Translation
3
- abs: https://t.co/fYrwIPVpV2 https://t.co/b23EVZ6J5O",11
4
- 1,1546669556789387264,"Exploring Length Generalization in Large Language Models
5
- abs: https://t.co/7Gphb7Q8jJ https://t.co/cCpLTSrXfR",17
6
- 2,1546667351885729792,"LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision, and Action
7
- abs:… https://t.co/lCk3P8KIwM",32
8
- 3,1546665636734140417,"Scaling the Number of Tasks in Continual Learning
9
- abs: https://t.co/F4HxAxGUpI https://t.co/cyvXSBKthk",47
10
- 4,1546707909748342784,"High-resource Language-specific Training for Multilingual Neural Machine Translation
11
- abs: https://t.co/fYrwIPVpV2 https://t.co/b23EVZ6J5O",11
12
- 5,1546669556789387264,"Exploring Length Generalization in Large Language Models
13
- abs: https://t.co/7Gphb7Q8jJ https://t.co/cCpLTSrXfR",17
14
- 6,1546667351885729792,"LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision, and Action
15
- abs:… https://t.co/lCk3P8KIwM",32
16
- 7,1546665636734140417,"Scaling the Number of Tasks in Continual Learning
17
- abs: https://t.co/F4HxAxGUpI https://t.co/cyvXSBKthk",47
18
- 8,1546379163803721729,"CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal Relationships
19
- abs: https://t.co/ozIrQ7gx68 https://t.co/gSGfnsZbji",53
20
- 9,1546376106122567681,"The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications
21
- a… https://t.co/TOPpVPQbM8",11
22
- 10,1546375104262725632,"Code Translation with Compiler Representations
23
- abs: https://t.co/nTT3dmXH4c
24
-
25
- method improves upon the state of the… https://t.co/wD4SozbilN",127
26
- 11,1546363822121820162,"End-to-End Binaural Speech Synthesis
27
- abs: https://t.co/tR86cSAjQO
28
- project page: https://t.co/nB1iSV68U2
29
-
30
- end-to-end… https://t.co/OTzfVZTFqb",58
31
- 12,1545243820496936960,"Cross-Scale Vector Quantization for Scalable Neural Speech Coding
32
- abs: https://t.co/AbE9rP0ApQ https://t.co/pZXUTNipgs",25
33
- 13,1545240373328592897,"Finding Fallen Objects Via Asynchronous Audio-Visual Integration
34
- abs: https://t.co/mv9Rvl0hFA
35
- project page:… https://t.co/N8l4zaP9bH",33
36
- 14,1545228848391938048,"Back to the Source: Diffusion-Driven Test-Time Adaptation
37
- abs: https://t.co/5jmESOLQxG https://t.co/cI5UFyQI0B",82
38
- 15,1544897525664169986,"When does Bias Transfer in Transfer Learning?
39
- abs: https://t.co/tf8FWyf8Ge https://t.co/0l6vy8RHXI",135
40
- 16,1544865587343630342,"Transformers are Adaptable Task Planners
41
- abs: https://t.co/6lgFJD2Olt
42
-
43
- TTP can be pre-trained on multiple preferenc… https://t.co/XrolcxlV22",82
44
- 17,1544853650316599299,"Ultra-Low-Bitrate Speech Coding with Pretrained Transformers
45
- abs: https://t.co/rYRe5N7Bqu https://t.co/zOsCY53r2s",34
46
- 18,1544721641049145345,"CLEAR: Improving Vision-Language Navigation with Cross-Lingual, Environment-Agnostic Representations
47
-
48
- abs:… https://t.co/6ng3UArKdE",52
49
- 19,1544521037274046464,"An Empirical Study of Implicit Regularization in Deep Offline RL
50
- abs: https://t.co/rCjHkQ2jwL https://t.co/8hJOsVA6D0",45
51
- 20,1544519268234153984,"Offline RL Policies Should be Trained to be Adaptive
52
- abs: https://t.co/kC7TPSOTt2 https://t.co/Ox2D028P33",34
53
- 21,1544491557293854721,"Efficient Representation Learning via Adaptive Context Pooling
54
- abs: https://t.co/zZzezhvbN7 https://t.co/xJoStGBSqp",163
55
- 22,1544488616734429185,"CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
56
- abs:… https://t.co/HqXmDpaUEh",102
57
- 23,1544485593991811072,"How Much More Data Do I Need? Estimating Requirements for Downstream Tasks
58
- abs: https://t.co/RNXT4IRIaL https://t.co/uJGrEfgaAv",230
59
- 24,1544483235542990856,"Neural Networks and the Chomsky Hierarchy
60
- abs: https://t.co/u6Jl2WvKMr
61
-
62
- sota architectures, such as LSTMs and Trans… https://t.co/DyHnH8Q8z7",209
63
- 25,1544207617102331906,"GlowVC: Mel-spectrogram space disentangling model for language-independent text-free voice conversion
64
- abs:… https://t.co/kFYdKhrhSA",19
65
- 26,1544201186739458049,"Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation
66
- abs:… https://t.co/yL9kWlUYfs",112
67
- 27,1544193877053161480,"WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents
68
- abs: https://t.co/8hZyMt90Rv
69
- pro… https://t.co/eHzGN2GHqj",52
70
- 28,1544127293660037120,"UserLibri: A Dataset for ASR Personalization Using Only Text
71
- abs: https://t.co/0bug7OWU42 https://t.co/OMqJSGlqDx",9
72
- 29,1543981460964708352,"LaserMix for Semi-Supervised LiDAR Semantic Segmentation
73
- abs: https://t.co/SvqHy1y7LI
74
- project page:… https://t.co/jbQtQiDbDy",74
75
- 30,1543766808309669889,"Rethinking Optimization with Differentiable Simulation from a Global Perspective
76
- abs: https://t.co/trEcw4VZb2
77
- proje… https://t.co/1UsI0q03IL",94
78
- 31,1543763117515182082,"Visual Pre-training for Navigation: What Can We Learn from Noise?
79
- abs: https://t.co/Rn5UGvvMMz
80
- github:… https://t.co/eKeMSlBxVx",134
81
- 32,1543759817449390080,"DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale
82
- abs:… https://t.co/IbF6IdUDj7",120
83
- 33,1543757524356272134,"When Does Differentially Private Learning Not Suffer in High Dimensions?
84
- abs: https://t.co/yws7BhoBaP https://t.co/bD2Gz6B3GU",28
85
- 34,1542740430084792320,"Implicit Neural Spatial Filtering for Multichannel Source Separation in the Waveform Domain
86
- abs:… https://t.co/3cNoOlr5SD",31
87
- 35,1542713456268304384,"Denoised MDPs: Learning World Models Better Than the World Itself
88
- abs: https://t.co/CPwlF0soWZ
89
- project page:… https://t.co/5BBwGXYZ2l",98
90
- 36,1542712192746782720,"Forecasting Future World Events with Neural Networks
91
- abs: https://t.co/tD8F0ZC1rC
92
- github: https://t.co/v8HZgye0ZH… https://t.co/eJaakYSUSw",77
93
- 37,1542709853516431361,"Learning Iterative Reasoning through Energy Minimization
94
- abs: https://t.co/WDLx1hKPqG
95
- project page:… https://t.co/oDEClr0ho1",125
96
- 38,1542709029964849154,"Improving the Generalization of Supervised Models
97
- abs: https://t.co/3CzEuuxvHt
98
- project page: https://t.co/uSjiKvSMN8 https://t.co/ffUkpTL7Ng",189
99
- 39,1542325850036752394,"RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
100
- abs:… https://t.co/iFAou98U0X",172
101
- 40,1542316111743664133,"Masked World Models for Visual Control
102
- abs: https://t.co/eZx53zuqnm
103
- project page: https://t.co/hgZwrV3zO5
104
-
105
- Can MAE… https://t.co/UfybFx81uj",83
106
- 41,1542313347835731970,"Beyond neural scaling laws: beating power law scaling via data pruning
107
- abs: https://t.co/OFYkTt5b2d https://t.co/7SKXMClaR8",164
108
- 42,1542312585768435712,"3D-Aware Video Generation
109
- abs: https://t.co/N64ARXFKMJ
110
- project page: https://t.co/5MoGVKqItn https://t.co/uZdLIXWc1P",122
111
- 43,1541957148070010881,"DayDreamer: World Models for Physical Robot Learning
112
- abs: https://t.co/quyTQGcjEA
113
- project page:… https://t.co/DD67NUzgJy",182
114
- 44,1541948699559006210,"Long Range Language Modeling via Gated State Spaces
115
- abs: https://t.co/HEd2lwlGan https://t.co/tPOHv7dP0T",124
116
- 45,1541945827035332610,"ProGen2: Exploring the Boundaries of Protein Language Models
117
- abs: https://t.co/kelWMlhH8r
118
- github:… https://t.co/nzvei5pMJR",64
119
- 46,1541626617490837504,"Multitask vocal burst modeling with ResNets and pre-trained paralinguistic Conformers
120
- abs: https://t.co/QZLcoFOeSz https://t.co/315WfiVVRr",11
121
- 47,1541599748624351233,"Programmatic Concept Learning for Human Motion Description and Synthesis
122
- abs: https://t.co/uIoxGozwhD
123
- project page:… https://t.co/MmCMQouLF7",83
124
- 48,1541592312094101506,"Prompting Decision Transformer for Few-Shot Policy Generalization
125
- abs: https://t.co/bD2f4SjRP6
126
- project page:… https://t.co/ZfAxxx6zCu",48
127
- 49,1541590513241006080,"Repository-Level Prompt Generation for Large Language Models of Code
128
- abs: https://t.co/GG1YHoCQdf
129
- github:… https://t.co/Z9fUO4r8sU",56
130
- 50,1541588372631818241,"Your Autoregressive Generative Model Can be Better If You Treat It as an Energy-Based One
131
- abs:… https://t.co/uJuKxO7XJC",121
132
- 51,1541226747533922308,"PSP: Million-level Protein Sequence Dataset for Protein Structure Prediction
133
- abs: https://t.co/yXdFTqRWF3
134
-
135
- dataset… https://t.co/ZDNMPI2NVR",94
136
- 52,1541219433259175937,"Megapixel Image Generation with Step-Unrolled Denoising Autoencoders
137
- abs: https://t.co/6fX9PseXBT
138
-
139
- obtain FID score… https://t.co/HPodJ8xzPx",147
140
- 53,1540184734390706176,"Walk the Random Walk: Learning to Discover and Reach Goals Without Supervision
141
- abs: https://t.co/NO2vzfdYdS https://t.co/WoN73BzgeQ",66
142
- 54,1540176838017916933,"Offline RL for Natural Language Generation with Implicit Language Q Learning
143
- abs: https://t.co/wYTtUgdryZ
144
- project p… https://t.co/xS8JCODxwP",43
145
- 55,1540161095930880001,"MaskViT: Masked Visual Pre-Training for Video Prediction
146
- abs: https://t.co/uhMEB6ashb
147
- project page:… https://t.co/gbnxrCxUrc",147
148
- 56,1540156319923060736,"The ArtBench Dataset: Benchmarking Generative Models with Artworks
149
- abs: https://t.co/Zzq0A2i5ob
150
- github:… https://t.co/SfQlvTLrk3",200
151
- 57,1539811680359796739,"TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning
152
- abs:… https://t.co/UArbr7zhRE",85
153
- 58,1539794210190155778,"Jointist: Joint Learning for Multi-instrument Transcription and Its Applications
154
- abs: https://t.co/xeuPUBcr01
155
- proje… https://t.co/QmyCioKviJ",18
156
- 59,1539780412297330689,"GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
157
- abs: https://t.co/pKS5mgoDkG
158
-
159
- GEMv2 supports 40 docum… https://t.co/qMitHzTlO0",18
160
- 60,1539777865688010753,"reStructured Pre-training
161
- abs: https://t.co/mYm7qbt59N https://t.co/O5T3tSY4PL",32
162
- 61,1539672920456298498,"Scaling Autoregressive Models for Content-Rich Text-to-Image Generation
163
- paper: https://t.co/NKkTeHttLd
164
- project page… https://t.co/CcKxsWPmjR",137
165
- 62,1539480179151712256,"Intra-Instance VICReg: Bag of Self-Supervised Image Patch Embedding
166
- abs: https://t.co/Bq3GUQywPV https://t.co/iLTaoXm0yC",66
167
- 63,1539460213211910150,"EnvPool: A Highly Parallel Reinforcement Learning Environment Execution Engine
168
- abs: https://t.co/F4XkHLRxPi
169
- github:… https://t.co/JiwSuMdkZH",34
170
- 64,1539459120667021312,"EpiGRAF: Rethinking training of 3D GANs
171
- abs: https://t.co/RcY2vQr0NH
172
- project page: https://t.co/kuXPKA00bZ https://t.co/CVCsseAS21",145
173
- 65,1539453554578055168,"Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors
174
- abs:… https://t.co/noluSxtqzu",72
175
- 66,1539435374103220226,"Global Context Vision Transformers
176
- abs: https://t.co/d6go0yv7fu
177
- github: https://t.co/rUYFs09ReC
178
-
179
- On ImageNet-1K dat… https://t.co/HJnw5wclQV",89
180
- 67,1539421251076247554,"(Certified!!) Adversarial Robustness for Free!
181
- abs: https://t.co/NTU6lioyII
182
-
183
- show how to achieve sota certified adv… https://t.co/2VW1CDARya",42
184
- 68,1539076449788997632,"A Closer Look at Smoothness in Domain Adversarial Training
185
- abs: https://t.co/GgKE9695vj
186
- github:… https://t.co/33MX6TZhjt",97
187
- 69,1538710356444471296,"Fast Finite Width Neural Tangent Kernel
188
- abs: https://t.co/iY1lFoYMjA https://t.co/hWzzcCd5OZ",23
189
- 70,1538706936211951617,"What do navigation agents learn about their environment?
190
- abs: https://t.co/eXelV0REgZ
191
- github:… https://t.co/TGSzEQ1v1c",37
192
- 71,1538698653493338114,"Bootstrapped Transformer for Offline Reinforcement Learning
193
- abs: https://t.co/YiEY3uiTgL https://t.co/yle4hPgMmf",137
194
- 72,1538695457550921728,"Bridge-Tower: Building Bridges Between Encoders in Vision-Language Representation Learning
195
- abs:… https://t.co/uLQLmf4l3M",42
196
- 73,1538692524830769152,"MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge
197
- abs: https://t.co/etfGL1xnum
198
- project pa… https://t.co/Fv1aLuEJSV",265
199
- 74,1538687423722541056,"Lossy Compression with Gaussian Diffusion
200
- abs: https://t.co/tw5YiZAN3B
201
-
202
- implement a proof of concept and find that… https://t.co/4nvLjhIX4e",102
203
- 75,1538686489491648514,"NU-Wave 2: A General Neural Audio Upsampling Model for Various Sampling Rates
204
- abs: https://t.co/4S8sBXq6Ko
205
-
206
- a diffu… https://t.co/xd3eQ0ApQJ",87
207
- 76,1538006265363738625,"iBoot: Image-bootstrapped Self-Supervised Video Representation Learning
208
- abs: https://t.co/dkZUd4QC81 https://t.co/pJFpxd7ckU",73
209
- 77,1538000649933115393,"Neural Scene Representation for Locomotion on Structured Terrain
210
- abs: https://t.co/68xY622f4w https://t.co/W3wTYp31f6",83
211
- 78,1537924151389736961,"Programmatic Concept Learning for Human Motion Description and Synthesis
212
- paper: https://t.co/Qemk23gUHX
213
- project pag… https://t.co/ImHeYQC5vj",60
214
- 79,1537640654968324099,"Spatially-Adaptive Multilayer Selection for GAN Inversion and Editing
215
- abs: https://t.co/9tpvhXuaRw
216
- project page:… https://t.co/XxpZg5PGke",73
217
- 80,1537637590274277376,"MoDi: Unconditional Motion Synthesis from Diverse Data
218
- abs: https://t.co/YBV9jSUemo https://t.co/o1uvG18RSk",70
219
- 81,1537630146244517889,"OmniMAE: Single Model Masked Pretraining on Images and Videos
220
- abs: https://t.co/j9a3imUEJ6
221
-
222
- single pretrained model… https://t.co/OiR2pY5emm",146
223
- 82,1537622879386456064,"SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos
224
- abs: https://t.co/0MkpFJiUzM
225
-
226
- using spars… https://t.co/x1Hvgf13qE",54
227
- 83,1537621348339572736,"BYOL-Explore: Exploration by Bootstrapped Prediction
228
- abs: https://t.co/xXQtolzjlP
229
-
230
- BYOL-Explore achieves superhuman… https://t.co/uZvAbVd1Bb",79
231
- 84,1537618457365303296,"Know your audience: specializing grounded language models with the game of Dixit
232
- abs: https://t.co/T8d5ir8LDQ https://t.co/zSk5oR2F9D",39
233
- 85,1537323042380124160,"VCT: A Video Compression Transformer
234
- abs: https://t.co/llH1L1ooKa
235
-
236
- presented an elegantly simple transformer-based… https://t.co/ErovCWVDg3",68
237
- 86,1537314480056672258,"Contrastive Learning as Goal-Conditioned Reinforcement Learning
238
- abs: https://t.co/6dv7PNn0qq
239
- project page:… https://t.co/vRSdekL9If",77
240
- 87,1537288570880368640,"Masked Siamese ConvNets
241
- abs: https://t.co/YMG1O1ZZ5N https://t.co/LCVqVvFNfR",83
242
- 88,1537265816609116161,"Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone
243
- abs: https://t.co/UgdYW9Cf1g
244
- project page:… https://t.co/v2sTfFBq5r",89
245
- 89,1537257011657814016,"Variable Bitrate Neural Fields
246
- abs: https://t.co/Rp1t2LaQaW
247
- project page: https://t.co/e2t8OrznxI https://t.co/6hw7OwbjZN",162
248
- 90,1537254679188488195,"A Unified Sequence Interface for Vision Tasks
249
- abs: https://t.co/hXbVXdqHh1
250
-
251
- explore a unified sequence interface fo… https://t.co/QG5UxvIgS4",50
252
- 91,1537252952666087424,"Prefix Language Models are Unified Modal Learners
253
- abs: https://t.co/BD4b3rQnKg https://t.co/2ofScnMIKN",66
254
- 92,1537248480074293251,"Diffusion Models for Video Prediction and Infilling
255
- abs: https://t.co/MwfxwKXG4z
256
- project page:… https://t.co/rnwB8eGFAs",103
257
- 93,1536879515883945984,"ReCo: Retrieve and Co-segment for Zero-shot Transfer
258
- abs: https://t.co/YwxkCGGyG1
259
- project page:… https://t.co/WzVhmfhWCz",58
260
- 94,1536872875885580288,"Object Scene Representation Transformer
261
- abs: https://t.co/SUfNIBGAxt
262
- project page: https://t.co/j8ebSAeM8v
263
-
264
- scales… https://t.co/wa4vo3RJAK",97
265
- 95,1536871347372052480,"Adversarial Audio Synthesis with Complex-valued Polynomial Networks
266
- abs: https://t.co/ekeC0nKIhR
267
-
268
- APOLLO results in… https://t.co/sDcl2nydkt",23
269
- 96,1536526888289574915,"Large-Scale Retrieval for Reinforcement Learning
270
- abs: https://t.co/fjzGvI3ZXB https://t.co/eFRHt8yXoq",86
271
- 97,1536522198785183744,"GLIPv2: Unifying Localization and Vision-Language Understanding
272
- abs: https://t.co/3GomrHG8xq
273
- github:… https://t.co/bD68NZk4Lp",73
274
- 98,1536521362898145280,"Self-critiquing models for assisting human evaluators
275
- abs: https://t.co/8Zy2xfA5Qz https://t.co/qndZMS9zXa",19
276
- 99,1536515535202136064,"Multi-instrument Music Synthesis with Spectrogram Diffusion
277
- abs: https://t.co/UNDV4e7A6R
278
-
279
- use a simple two-stage pr… https://t.co/AebIraqLF2",87
280
- 100,1536493418305703938,"How Much is Enough? A Study on Diffusion Times in Score-based Generative Models
281
- abs: https://t.co/qFEZBDrdrq https://t.co/iBlNs4iNE2",60
282
- 101,1536491133513129990,"Meta Optimal Transport
283
- abs: https://t.co/UKdYXKA8Vd
284
- github: https://t.co/xb9FVcim7g
285
-
286
- Meta OT models surpass the sta… https://t.co/OlfwZIC52r",67
287
- 102,1535656084488192005,"Neural Prompt Search
288
- abs: https://t.co/wZTUHIcqdv
289
- github: https://t.co/vnYEMBrKzt
290
-
291
- view existing parameter-efficien… https://t.co/pLvxNt84gV",174
292
- 103,1535521674233319424,"Deep Surrogate Assisted Generation of Environments
293
- abs: https://t.co/1RYhxJ71tt
294
- project page:… https://t.co/5MuAOKIePA",58
295
- 104,1535521046257975297,"Deep Hierarchical Planning from Pixels
296
- abs: https://t.co/xXBDevsRnK
297
- project page: https://t.co/LoNsGVecaR https://t.co/K7RKIq2hBT",101
298
- 105,1535506620624642048,"VN-Transformer: Rotation-Equivariant Attention for Vector Neurons
299
- abs: https://t.co/OkS58YpYq8 https://t.co/ailLjhzsqa",144
300
- 106,1535469100436271105,"Factuality Enhanced Language Models for Open-Ended Text Generation
301
- abs: https://t.co/YX83NnfpMU
302
-
303
- factual-nucleus sa… https://t.co/suFGgO8Ajv",31
304
- 107,1535449832332177408,"Unveiling Transformers with LEGO: a synthetic reasoning task
305
- abs: https://t.co/FCnAD9AjMY https://t.co/LsUblvE3Ig",77
306
- 108,1535392356068892674,"BigVGAN: A Universal Neural Vocoder with Large-Scale Training
307
- abs: https://t.co/4NRS1WBePa
308
- project page:… https://t.co/rpuKyOEGMH",170
309
- 109,1535069067052195862,"Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
310
- abs:… https://t.co/v2aIh9B5H2",158
311
- 110,1535067850435600403,"Draft-and-Revise: Effective Image Generation with Contextual RQ-Transformer
312
- abs: https://t.co/0s94Tbwh3q
313
-
314
- propose i… https://t.co/lQZWEHXeRI",52
315
- 111,1535066703075352601,"VideoINR: Learning Video Implicit Neural Representation for Continuous Space-Time Super-Resolution
316
- abs:… https://t.co/UKXo53aomf",146
317
- 112,1535061799975919633,"Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem
318
- abs:… https://t.co/fUyM4hz22a",48
319
- 113,1535026713100537871,"Sparse Fusion Mixture-of-Experts are Domain Generalizable Learners
320
- abs: https://t.co/koYO5SuiDQ
321
- github:… https://t.co/1xMmVzboCC",70
322
- 114,1534712305790894081,"STable: Table Generation Framework for Encoder-Decoder Models
323
- abs: https://t.co/P8GcsztVFp https://t.co/lJnhODKXyn",32
324
- 115,1534702470202630144,"Neural Diffusion Processes
325
- abs: https://t.co/do2pFgpRWY
326
-
327
- empirically show that NDPs are able to capture functional… https://t.co/Fx5BFrA9qQ",229
328
- 116,1534701793183252485,"Patch-based Object-centric Transformers for Efficient Video Generation
329
- abs: https://t.co/oeAa0hiBqZ
330
- project page:… https://t.co/qCoaulnDfS",30
331
- 117,1534700653628764160,"Accelerating Score-based Generative Models for High-Resolution Image Synthesis
332
- abs: https://t.co/rC90ydANVJ
333
- project… https://t.co/5reyDDPyBN",69
334
- 118,1534476660355043329,"On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning
335
- abs: https://t.co/1gEuTB7Sf1
336
-
337
- multi-task pre… https://t.co/zx8QDoxq2l",39
338
- 119,1534465882512146432,"Few-Shot Learning by Dimensionality Reduction in Gradient Space
339
- abs: https://t.co/IMwlsW0r5V
340
-
341
- introduce SubGD, a no… https://t.co/YltxH8mUtF",204
342
- 120,1534376291453083648,"DETR++: Taming Your Multi-Scale Detection Transformer
343
- abs: https://t.co/kOQ5V4vC3C
344
-
345
- DETR++, a new architecture that… https://t.co/i7qtSX9eA3",85
346
- 121,1534347375128547328,"Intra-agent speech permits zero-shot task acquisition
347
- abs: https://t.co/2yVGA91kSA
348
-
349
- with ~ 150 additional image cap… https://t.co/DtBczvw7lh",60
350
- 122,1534343347334176770,"Universal Speech Enhancement with Score-based Diffusion
351
- abs: https://t.co/jv1rQ14Do4
352
- project page:… https://t.co/UMEE3irGWN",125
353
- 123,1534341405920870400,"Generating Long Videos of Dynamic Scenes
354
- abs: https://t.co/SjMCJub1RO
355
- project page: https://t.co/c97Jcf3lcC
356
-
357
- presen… https://t.co/jgcfMwGMo6",336
358
- 124,1533997063951765506,"Zero-Shot Voice Conditioning for Denoising Diffusion TTS Models
359
- abs: https://t.co/iTfFppABzr
360
-
361
- method requires a sho… https://t.co/GALvAsiQ0J",89
362
- 125,1533996337557020672,"Drawing out of Distribution with Neuro-Symbolic Generative Models
363
- abs: https://t.co/PcRRRLIVyV
364
-
365
- DooD trained on MNI… https://t.co/h28KgM3m3k",39
366
- 126,1533993050627776512,"Separable Self-attention for Mobile Vision Transformers
367
- abs: https://t.co/Xj1aZMucFe
368
-
369
- With ~ 3M parameters, MobileV… https://t.co/LTag2ck7Ew",89
370
- 127,1533989659017199617,"Extreme Compression for Pre-trained Transformers Made Simple and Efficient
371
- abs: https://t.co/7epbwDmV31 https://t.co/n9nppcTgGJ",84
372
- 128,1533988146102288386,"On the duality between contrastive and non-contrastive self-supervised learning
373
- abs: https://t.co/O2GdHjqiTz https://t.co/nUibodNE9M",83
374
- 129,1533982101653098503,"ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers
375
- abs:… https://t.co/tQuBWS3uaH",25
376
- 130,1533980842867015681,"Torsional Diffusion for Molecular Conformer Generation
377
- abs: https://t.co/VfhEdlJLd7
378
- github: https://t.co/DYpXh7NbKe https://t.co/khz3yO5FFZ",24
379
- 131,1533980437114232832,"Blended Latent Diffusion
380
- abs: https://t.co/5K8QQnlQfz
381
- project page: https://t.co/ztlJtR4Sio
382
-
383
- present an accelerated… https://t.co/qzrdUJc4i9",55
384
- 132,1533979552761913344,"Diffusion-GAN: Training GANs with Diffusion
385
- abs: https://t.co/rxRpORfP5U
386
-
387
- DiffusionGAN can provide stable and data-… https://t.co/ScQTvm3XaA",237
388
- 133,1533676404063232000,"Beyond Tabula Rasa: Reincarnating Reinforcement Learning
389
- abs: https://t.co/r8TcfqPyIs https://t.co/qSO5K11vYB",34
390
- 134,1533649732345778177,"Improving Fairness in Large-Scale Object Recognition by CrowdSourced Demographic Information
391
- abs:… https://t.co/3mGwmSsO6M",17
392
- 135,1533634419986153472,"Positive Unlabeled Contrastive Learning
393
- abs: https://t.co/LC33ii48Q6 https://t.co/eWLoasRamS",67
394
- 136,1533633258545610754,"Reinforcement Learning with Neural Radiance Fields
395
- abs: https://t.co/8ESw75I2N9
396
- project page:… https://t.co/DQrpZ5dyrb",131
397
- 137,1533619945996697600,"Compositional Visual Generation with Composable Diffusion Models
398
- abs: https://t.co/FEKYaDOlwf
399
- project page:… https://t.co/qvaTyuj3un",122
400
- 138,1533611409069711368,"Neural Differential Equations for Learning to Program Neural Nets Through Continuous Learning Rules
401
- abs:… https://t.co/rQTNT4yfcB",40
402
- 139,1532729442321170433,"Deep Learning on Implicit Neural Datasets
403
- abs: https://t.co/nPGleDBRSq
404
-
405
- introduce the INR-Net, the first general fr… https://t.co/i1xT7bLhSN",81
406
- 140,1532726423697465344,"SupMAE: Supervised Masked Autoencoders Are Efficient Vision Learners
407
- abs: https://t.co/SIR2ufE89J
408
- github:… https://t.co/tZoNFvtDFQ",178
409
- 141,1532558380119752705,"DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks
410
- abs:… https://t.co/dHBUdpmqm9",31
411
- 142,1532554016072376323,"Cascaded Video Generation for Videos In-the-Wild
412
- abs: https://t.co/wDkiRCEWXN https://t.co/GJSVK80qC0",57
413
- 143,1532547568567300096,"Finding the Right Recipe for Low Resource Domain Adaptation in Neural Machine Translation
414
- abs:… https://t.co/FAEEhSyQpY",12
415
- 144,1532540853071265799,"BayesFormer: Transformer with Uncertainty Estimation
416
- abs: https://t.co/0OqGgau2D2
417
-
418
- introduce BayesFormer, a Transfo… https://t.co/znYfXmUPpJ",188
419
- 145,1532539121662574605,"Improving Diffusion Models for Inverse Problems using Manifold Constraints
420
- abs: https://t.co/Mt78QlNgZZ https://t.co/d6T7XFkqf1",115
421
- 146,1532538212438130697,"DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps
422
- abs:… https://t.co/PBn2cEeEle",93
423
- 147,1532201565167267840,"Hopular: Modern Hopfield Networks for Tabular Data
424
- abs: https://t.co/O5h6GYoGZd
425
- github: https://t.co/kztLUsmzMY
426
- pro… https://t.co/xqlUFoil7K",485
427
- 148,1532173830428442627,"PandA: Unsupervised Learning of Parts and Appearances in the Feature Maps of GANs
428
- abs: https://t.co/MdoshW31xe
429
- gith… https://t.co/d0PWKpIufP",121
430
- 149,1532162242715721728,"Elucidating the Design Space of Diffusion-Based Generative Models
431
- abs: https://t.co/WtodJSq1wa
432
-
433
- improve efficiency… https://t.co/Fp84kzysBZ",257
434
- 150,1531810146178957312,"Chefs' Random Tables: Non-Trigonometric Random Features
435
- abs: https://t.co/qrt5BnhG2g https://t.co/AuWq9HKnl5",19
436
- 151,1531802121280147457,"Few-Shot Diffusion Models
437
- abs: https://t.co/Oz75eOx0Ue
438
-
439
- At test time, the model is able to generate samples from pr… https://t.co/qw3Wdivfks",114
440
- 152,1531798720550952961,"SAMURAI: Shape And Material from Unconstrained Real-world Arbitrary Image collections
441
- abs: https://t.co/eviBoaJ1Zw… https://t.co/XsdD2CSafR",148
442
- 153,1531484127177936896,"Play it by Ear: Learning Skills amidst Occlusion through Audio-Visual Imitation Learning
443
- abs:… https://t.co/yafGze7shH",36
444
- 154,1531466054492364800,"Dataset Condensation via Efficient Synthetic-Data Parameterization
445
- abs: https://t.co/IA66WHQQCH
446
- github:… https://t.co/PuBEVyx5EK",110
447
- 155,1531465172262567937,"Neural Shape Mating: Self-Supervised Object Assembly with Adversarial Shape Priors
448
- abs: https://t.co/25EYR1yE1A
449
- pro… https://t.co/qdqxXZtyYx",56
450
- 156,1531460153152786432,"Teaching Models to Express Their Uncertainty in Words
451
- abs: https://t.co/rKcZNhBLt5
452
-
453
- GPT-3 model can learn to expres… https://t.co/Z3YCzXqaMX",163
454
- 157,1531454478968406016,"Temporal Latent Bottleneck: Synthesis of Fast and Slow Processing Mechanisms in Sequence Learning
455
- abs:… https://t.co/U47eMKEmf3",36
456
- 158,1531451492120535041,"Gating Dropout: Communication-efficient Regularization for Sparsely Activated Transformers
457
- abs:… https://t.co/Ar0fNxMRi9",28
458
- 159,1531445364217237509,"Prompting ELECTRA: Few-Shot Learning with Discriminative Pre-Trained Models
459
- abs: https://t.co/myWID3paI2 https://t.co/S0WUP71wz8",66
460
- 160,1531444059780308996,"Neural Volumetric Object Selection
461
- abs: https://t.co/ZLiJ5iBZzQ
462
- project page: https://t.co/YGsNO14XK7 https://t.co/4twrRcyExx",97
463
- 161,1531442002814025728,"Multi-Game Decision Transformers
464
- abs: https://t.co/5JtgTx3B49
465
- project page: https://t.co/rKk7h7wLga
466
-
467
- a single trans… https://t.co/zcJXA5tDhR",105
468
- 162,1531440090161025024,"Diffusion-LM Improves Controllable Text Generation
469
- abs: https://t.co/YYVX2fuWrM
470
-
471
- Diffusion-LM iteratively denoises… https://t.co/1pJ5djHV9T",145
472
- 163,1531176037400338432,"MyoSuite -- A contact-rich simulation suite for musculoskeletal motor control
473
- abs: https://t.co/HpRvGT2UDz
474
- project… https://t.co/6noxiVtz85",47
475
- 164,1531174102572191744,"Neural Basis Models for Interpretability
476
- abs: https://t.co/u0G7oK87X4 https://t.co/ML7UCNPDkP",55
477
- 165,1531173694214656005,"Scalable Interpretability via Polynomials
478
- abs: https://t.co/EKZDra09oM https://t.co/XyIoQHWftG",32
479
- 166,1531173081393336320,"Sharpness-Aware Training for Free
480
- abs: https://t.co/R6SSrWAjL2 https://t.co/alHDGt3zQo",155
481
- 167,1531165352037691392,"Global Normalization for Streaming Speech Recognition in a Modular Framework
482
- abs: https://t.co/OfIb7wiVkx
483
-
484
- demonstr… https://t.co/0iVBVXVBBs",21
485
- 168,1531104909927628806,"Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object Interactions
486
- abs: https://t.co/gVXiOx5Df3 https://t.co/eufEJbHHRr",47
487
- 169,1531100741166833664,"FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
488
- abs: https://t.co/3aHeecihur
489
-
490
- an IO-awa… https://t.co/GoJsOKYEgt",233
491
- 170,1531098962932944896,"Contrastive Siamese Network for Semi-supervised Speech Recognition
492
- abs: https://t.co/SL374ByjZO
493
-
494
- experiments show t… https://t.co/efVonWBQC5",71
495
- 171,1531096569365282816,"X-ViT: High Performance Linear Vision Transformer without Softmax
496
- abs: https://t.co/A6HZ2vXKDB https://t.co/kArY0Tm4VE",120
497
- 172,1531093245308059650,"Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval
498
-
499
- transformer… https://t.co/OSLGlyUNqb",12
500
- 173,1531092289090736129,"Quark: Controllable Text Generation with Reinforced Unlearning
501
- abs: https://t.co/OmS9AqhC7d
502
-
503
- introduce Quantized Re… https://t.co/M4DHSUpwF3",144
504
- 174,1531091654567919616,"Training and Inference on Any-Order Autoregressive Models the Right Way
505
- abs: https://t.co/G8DNeKtoJK
506
-
507
- leads to impr… https://t.co/JjXafy7iAu",22
508
- 175,1531090584231890947,"Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation
509
- abs:… https://t.co/binMlc2scV",52
510
- 176,1531089687263293442,"Maximum Likelihood Training of Implicit Nonlinear Diffusion Models
511
- abs: https://t.co/U2YtYUURqH https://t.co/lw7hcspT7o",110
512
- 177,1531088458839740416,"Why So Pessimistic? Estimating Uncertainties for Offline RL through Ensembles, and Why Their Independence Matters
513
- a… https://t.co/e1H5ZyvcQg",20
514
- 178,1531086920461307906,"Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures
515
- abs:… https://t.co/7DWwix1kP1",81
516
- 179,1531017163284393987,"CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers
517
- github: https://t.co/1JuOHU7puc https://t.co/Wilcq2Xxb9",1498
518
- 180,1530278551676657665,"Discovering Policies with DOMiNO: Diversity Optimization Maintaining Near Optimality
519
- abs: https://t.co/swtjYLryr5 https://t.co/Ny4wTtkaAI",31
520
- 181,1530029153101168645,"Towards Learning Universal Hyperparameter Optimizers with Transformers
521
- abs: https://t.co/yON7zKZCRy
522
-
523
- extensive expe… https://t.co/UWv7nrCmhF",129
524
- 182,1530028097692647449,"BiT: Robustly Binarized Multi-distilled Transformer
525
- abs: https://t.co/buQ40Vo9ee https://t.co/Q8iyC2Auql",37
526
- 183,1530018008667660300,"Evaluating Multimodal Interactive Agents
527
- abs: https://t.co/CtrOihrZBZ https://t.co/sThFVydSUZ",23
528
- 184,1530013711645253632,"Matryoshka Representations for Adaptive Deployment
529
- abs: https://t.co/KkqN7sxmnN
530
-
531
- flexibility within the learned Mat… https://t.co/RYra48uEKN",69
532
- 185,1530010193836244992,"Green Hierarchical Vision Transformer for Masked Image Modeling
533
- abs: https://t.co/r4Y9LfE4HC
534
- github:… https://t.co/o7ZihujhkM",26
535
- 186,1529673576835698691,"Inception Transformer
536
- abs: https://t.co/EoPDBOafSS
537
-
538
- iFormer-S hits the top-1 accuracy of 83.4% on ImageNet-1K, much… https://t.co/24J3SnTBdm",117
539
- 187,1529640184081534977,"FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech
540
- abs: https://t.co/IABvUreqHv https://t.co/iUUzNPaPFp",30
541
- 188,1529637573462831105,"Autoformalization with Large Language Models
542
- abs: https://t.co/SoGYXkMGhV
543
-
544
- methodology results in a new state-of-th… https://t.co/pTxpC00QFC",24
545
- 189,1529630110885851136,"AdaMix: Mixture-of-Adapter for Parameter-efficient Tuning of Large Language Models
546
- abs: https://t.co/aD0daO7HEa
547
-
548
- By… https://t.co/NW3DbOJdwH",64
549
- 190,1529625016471633920,"An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
550
- abs:… https://t.co/gks4xeDd22",10
551
- 191,1529341790335246336,"Policy Compliance Detection via Expression Tree Inference
552
- abs: https://t.co/Ic7Wm852Qz https://t.co/4RtEnug1RD",8
553
- 192,1529309686318653441,"History Compression via Language Models in Reinforcement Learning
554
- abs: https://t.co/N1smkJUAW9 https://t.co/4v1an4CkTU",85
555
- 193,1529303237572034560,"On the Role of Bidirectionality in Language Model Pre-Training
556
- abs: https://t.co/fG2SbUhB1W
557
-
558
- propose a new framewor… https://t.co/Gc40i0zyeV",26
559
- 194,1529301315221917699,"Large Language Models are Zero-Shot Reasoners
560
- abs: https://t.co/GgdLms77wF
561
-
562
- LLMs are decent zero-shot reasoners by… https://t.co/PTH6QpdSo2",85
563
- 195,1529278657856000000,"Naive Few-Shot Learning: Sequence Consistency Evaluation
564
- abs: https://t.co/ySAzuujz2O https://t.co/aVVLHJdBUC",19
565
- 196,1529075001256824834,"All Birds with One Stone: Multi-task Text Classification for Efficient Inference with One Forward Pass
566
- abs:… https://t.co/fcPGWaFEk5",12
567
- 197,1529071850860453888,"StreamingQA: A Benchmark for Adaptation to New Knowledge over Time in Question Answering Models
568
- abs:… https://t.co/MDT1Bxw9by",20
569
- 198,1528909940324192256,"Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods
570
- abs:… https://t.co/B65LGrnCLg",38
571
- 199,1528907841335066625,"Flexible Diffusion Modeling of Long Videos
572
- abs: https://t.co/Cx1BUqA7zM
573
-
574
- demonstrate improved video modeling over p… https://t.co/Y15RoaMAFg",84
575
- 200,1528904484553900034,"Scaling Laws and Interpretability of Learning from Repeated Data
576
- abs: https://t.co/UbSQazzMwa
577
-
578
- performance of 800M… https://t.co/4HHdSCe8ZT",46
579
- 201,1528851863306752000,"Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
580
- project page:… https://t.co/5yJZQIqMdn",2724
581
- 202,1528584642407841792,"Self-Supervised Depth Estimation with Isometric-Self-Sample-Based Learning
582
- abs: https://t.co/rE7gjT0COx https://t.co/EtbaT2jTle",116
583
- 203,1528576691152494592,"Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors
584
- abs: https://t.co/bXqr4sP1V4
585
- github:… https://t.co/efonU0Az1m",59
586
- 204,1528569396456828929,"Why GANs are overkill for NLP
587
- abs: https://t.co/zwjCFxh22z https://t.co/tuM1ufFC7x",139
588
- 205,1528555058916429828,"Lossless Acceleration for Seq2seq Generation with Aggressive Decoding
589
- abs: https://t.co/7bmGFXe47E
590
- github:… https://t.co/bXfTVfP56t",48
591
- 206,1528541664561844229,"Planning with Diffusion for Flexible Behavior Synthesis
592
- abs: https://t.co/HSoQhC6WBV
593
- project page:… https://t.co/PA69vLOYmb",119
594
- 207,1527765335528591361,"Disentangling Visual Embeddings for Attributes and Objects
595
- abs: https://t.co/QlDsekM1rH https://t.co/YfsJGNzjlX",253
596
- 208,1527452603264733184,"RankGen: Improving Text Generation with Large Ranking Models
597
- abs: https://t.co/uVVfXNnZeR
598
- github:… https://t.co/GfRxgf4hKe",37
599
- 209,1527450826343604233,"Robust and Efficient Medical Imaging with Self-Supervision
600
- abs: https://t.co/oBqk2TTp73
601
-
602
- strategy leads to strong d… https://t.co/ptwGGG2NkL",45
603
- 210,1527097137825202177,"Masked Autoencoders As Spatiotemporal Learners
604
- abs: https://t.co/MWlK2uV6qF
605
-
606
- MAE method can learn strong representa… https://t.co/KX2kb7Zf0m",288
607
- 211,1527092033374113795,"Meta-Learning Sparse Compression Networks
608
- abs: https://t.co/pDKyAXyGmg https://t.co/ExJQyGQefn",34
609
- 212,1526825242026512385,"An Empirical Investigation of Representation Learning for Imitation
610
- abs: https://t.co/P6C15OJ0ft https://t.co/C0PcBJ72kH",40
611
- 213,1526798231191048192,"Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in Latent Space
612
- abs: https://t.co/kKjj0oKSyE https://t.co/bk1DPxlwZ9",49
613
- 214,1526738002621472768,"SKILL: Structured Knowledge Infusion for Large Language Models
614
- abs: https://t.co/vbExGmg4hx https://t.co/3hVTWxLVE1",46
615
- 215,1526435187093123072,"FactPEGASUS: Factuality-Aware Pre-training and Fine-tuning for Abstractive Summarization
616
- abs:… https://t.co/qG4s6MlGmd",46
617
- 216,1526428632868167682,"PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning
618
- abs: https://t.co/JTAU1vnmst https://t.co/fyonWO1rKa",45
619
- 217,1526373200183033857,"Diffusion Models for Adversarial Purification
620
- abs: https://t.co/VdSXsTahOY https://t.co/lFxumNcuIj",135