|
from typing import List, Literal |
|
|
|
import numpy as np |
|
import torchaudio |
|
from datasets import concatenate_datasets, load_dataset |
|
from pandas import concat, read_csv |
|
from tqdm import tqdm |
|
|
|
|
|
def get_audio_length(file_path: str) -> float: |
|
""" |
|
計錄音總長度 |
|
""" |
|
metadata = torchaudio.info(file_path) |
|
return metadata.num_frames / metadata.sample_rate |
|
|
|
|
|
def get_info(subsets: List[str] | Literal["saamgwokjinji", "seoiwuzyun"]) -> None: |
|
""" |
|
計音頻長度、字數、平均字數、中位數字數、覆蓋字數、平均語速 |
|
""" |
|
if not isinstance(subsets, list): |
|
subsets = [subsets] |
|
|
|
datasets = [] |
|
for subset in subsets: |
|
dataset = load_dataset('audiofolder', data_dir=f'./opus/{subset}', split='train') |
|
datasets.append(dataset) |
|
|
|
if len(datasets) > 1: |
|
dataset = concatenate_datasets(datasets) |
|
else: |
|
dataset = datasets[0] |
|
|
|
|
|
durations = [] |
|
total_duration = 0 |
|
|
|
for item in tqdm(dataset): |
|
file_path = item['audio']['path'] |
|
duration = get_audio_length(file_path) |
|
durations.append(duration) |
|
total_duration += duration |
|
|
|
|
|
min_duration = min(durations) |
|
max_duration = max(durations) |
|
avg_duration = np.mean(durations) |
|
median_duration = np.median(durations) |
|
|
|
|
|
print(f"Statistics for: {' & '.join(subsets)}") |
|
print(f"Total audio duration: {total_duration / 3600:.2f} hours") |
|
print(f"Total audio duration: {total_duration / 60:.2f} minutes") |
|
print(f"Minimum audio duration: {min_duration:.3f} seconds") |
|
print(f"Maximum audio duration: {max_duration:.3f} seconds") |
|
print(f"Average audio duration: {avg_duration:.3f} seconds") |
|
print(f"Median audio duration: {median_duration:.3f} seconds") |
|
|
|
|
|
metadata_list = [] |
|
for subset in subsets: |
|
metadata = read_csv(f'./opus/{subset}/metadata.csv') |
|
metadata_list.append(metadata) |
|
|
|
if len(metadata_list) > 1: |
|
metadata = concat(metadata_list) |
|
else: |
|
metadata = metadata_list[0] |
|
|
|
|
|
total_characters = metadata['transcription'].str.len().sum() |
|
|
|
|
|
mean_characters = metadata['transcription'].str.len().mean() |
|
|
|
|
|
median_characters = metadata['transcription'].str.len().median() |
|
|
|
|
|
unique_characters = set(''.join(metadata['transcription'])) |
|
|
|
|
|
print(f"Total characters: {total_characters}") |
|
print(f"Mean characters per transcription: {mean_characters:.2f}") |
|
print(f"Median characters per transcription: {median_characters}") |
|
print(f"Number of unique characters: {len(unique_characters)}") |
|
print(f"Unique characters: {''.join(sorted(unique_characters))}") |
|
print(f"Average speech rate: {total_characters / total_duration:.2f} characters per second") |
|
print("-" * 20) |
|
|
|
|
|
if __name__ == '__main__': |
|
get_info('saamgwokjinji') |
|
get_info('seoiwuzyun') |
|
get_info(['saamgwokjinji', 'seoiwuzyun']) |
|
|