File size: 92,396 Bytes
6f5df12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import gc
import hashlib
import itertools
import logging
import math
import os
import re
import shutil
import warnings
from pathlib import Path
from typing import List, Optional

import numpy as np
import torch
import torch.nn.functional as F

# imports of the TokenEmbeddingsHandler class
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from peft import LoraConfig, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import load_file, save_file
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DPMSolverMultistepScheduler,
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
from diffusers.loaders import LoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr
from diffusers.utils import (
    check_min_version,
    convert_all_state_dict_to_peft,
    convert_state_dict_to_diffusers,
    convert_state_dict_to_kohya,
    convert_unet_state_dict_to_peft,
    is_wandb_available,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.26.0.dev0")

logger = get_logger(__name__)


def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    train_text_encoder_ti=False,
    token_abstraction_dict=None,
    instance_prompt=str,
    validation_prompt=str,
    repo_folder=None,
    vae_path=None,
):
    img_str = "widget:\n"
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"""
        - text: '{validation_prompt if validation_prompt else ' ' }'
          output:
            url:
                "image_{i}.png"
        """
    if not images:
        img_str += f"""
        - text: '{instance_prompt}'
        """
    embeddings_filename = f"{repo_folder}_emb"
    instance_prompt_webui = re.sub(r"<s\d+>", "", re.sub(r"<s\d+>", embeddings_filename, instance_prompt, count=1))
    ti_keys = ", ".join(f'"{match}"' for match in re.findall(r"<s\d+>", instance_prompt))
    if instance_prompt_webui != embeddings_filename:
        instance_prompt_sentence = f"For example, `{instance_prompt_webui}`"
    else:
        instance_prompt_sentence = ""
    trigger_str = f"You should use {instance_prompt} to trigger the image generation."
    diffusers_imports_pivotal = ""
    diffusers_example_pivotal = ""
    webui_example_pivotal = ""
    if train_text_encoder_ti:
        trigger_str = (
            "To trigger image generation of trained concept(or concepts) replace each concept identifier "
            "in you prompt with the new inserted tokens:\n"
        )
        diffusers_imports_pivotal = """from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        """
        diffusers_example_pivotal = f"""embedding_path = hf_hub_download(repo_id='{repo_id}', filename='{embeddings_filename}.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[{ti_keys}], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[{ti_keys}], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        """
        webui_example_pivotal = f"""- *Embeddings*: download **[`{embeddings_filename}.safetensors` here 💾](/{repo_id}/blob/main/{embeddings_filename}.safetensors)**.
    - Place it on it on your `embeddings` folder
    - Use it by adding `{embeddings_filename}` to your prompt. {instance_prompt_sentence}
    (you need both the LoRA and the embeddings as they were trained together for this LoRA)
    """
        if token_abstraction_dict:
            for key, value in token_abstraction_dict.items():
                tokens = "".join(value)
                trigger_str += f"""
to trigger concept `{key}` → use `{tokens}` in your prompt \n
"""

    yaml = f"""---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
{img_str}
base_model: {base_model}
instance_prompt: {instance_prompt}
license: openrail++
---
"""

    model_card = f"""
# SDXL LoRA DreamBooth - {repo_id}

<Gallery />

## Model description

### These are {repo_id} LoRA adaption weights for {base_model}.

## Download model

### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

- **LoRA**: download **[`{repo_folder}.safetensors` here 💾](/{repo_id}/blob/main/{repo_folder}.safetensors)**.
    - Place it on your `models/Lora` folder.
    - On AUTOMATIC1111, load the LoRA by adding `<lora:{repo_folder}:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
{webui_example_pivotal}

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch
{diffusers_imports_pivotal}
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors')
{diffusers_example_pivotal}
image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)

## Trigger words

{trigger_str}

## Details
All [Files & versions](/{repo_id}/tree/main).

The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).

LoRA for the text encoder was enabled. {train_text_encoder}.

Pivotal tuning was enabled: {train_text_encoder_ti}.

Special VAE used for training: {vae_path}.

"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


def import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path, subfolder=subfolder, revision=revision
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "CLIPTextModelWithProjection":
        from transformers import CLIPTextModelWithProjection

        return CLIPTextModelWithProjection
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--pretrained_vae_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand.To load the custom captions, the training set directory needs to follow the structure of a "
            "datasets ImageFolder, containing both the images and the corresponding caption for each image. see: "
            "https://huggingface.co/docs/datasets/image_dataset for more information"
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset. In some cases, a dataset may have more than one configuration (for example "
        "if it contains different subsets of data within, and you only wish to load a specific subset - in that case specify the desired configuration using --dataset_config_name. Leave as "
        "None if there's only one config.",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        help="A path to local folder containing the training data of instance images. Specify this arg instead of "
        "--dataset_name if you wish to train using a local folder without custom captions. If you wish to train with custom captions please specify "
        "--dataset_name instead.",
    )

    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )

    parser.add_argument(
        "--image_column",
        type=str,
        default="image",
        help="The column of the dataset containing the target image. By "
        "default, the standard Image Dataset maps out 'file_name' "
        "to 'image'.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default=None,
        help="The column of the dataset containing the instance prompt for each image",
    )

    parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")

    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
        help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
    )
    parser.add_argument(
        "--token_abstraction",
        type=str,
        default="TOK",
        help="identifier specifying the instance(or instances) as used in instance_prompt, validation prompt, "
        "captions - e.g. TOK. To use multiple identifiers, please specify them in a comma seperated string - e.g. "
        "'TOK,TOK2,TOK3' etc.",
    )

    parser.add_argument(
        "--num_new_tokens_per_abstraction",
        type=int,
        default=2,
        help="number of new tokens inserted to the tokenizers per token_abstraction identifier when "
        "--train_text_encoder_ti = True. By default, each --token_abstraction (e.g. TOK) is mapped to 2 new "
        "tokens - <si><si+1> ",
    )

    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=1024,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--crops_coords_top_left_h",
        type=int,
        default=0,
        help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
    )
    parser.add_argument(
        "--crops_coords_top_left_w",
        type=int,
        default=0,
        help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )

    parser.add_argument(
        "--text_encoder_lr",
        type=float,
        default=5e-6,
        help="Text encoder learning rate to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )

    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )

    parser.add_argument(
        "--train_text_encoder_ti",
        action="store_true",
        help=("Whether to use textual inversion"),
    )

    parser.add_argument(
        "--train_text_encoder_ti_frac",
        type=float,
        default=0.5,
        help=("The percentage of epochs to perform textual inversion"),
    )

    parser.add_argument(
        "--train_text_encoder_frac",
        type=float,
        default=1.0,
        help=("The percentage of epochs to perform text encoder tuning"),
    )

    parser.add_argument(
        "--optimizer",
        type=str,
        default="adamW",
        help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
    )

    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
    )

    parser.add_argument(
        "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--prodigy_beta3",
        type=float,
        default=None,
        help="coefficients for computing the Prodidy stepsize using running averages. If set to None, "
        "uses the value of square root of beta2. Ignored if optimizer is adamW",
    )
    parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
    parser.add_argument(
        "--adam_weight_decay_text_encoder", type=float, default=None, help="Weight decay to use for text_encoder"
    )

    parser.add_argument(
        "--adam_epsilon",
        type=float,
        default=1e-08,
        help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
    )

    parser.add_argument(
        "--prodigy_use_bias_correction",
        type=bool,
        default=True,
        help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
    )
    parser.add_argument(
        "--prodigy_safeguard_warmup",
        type=bool,
        default=True,
        help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
        "Ignored if optimizer is adamW",
    )
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )
    parser.add_argument(
        "--cache_latents",
        action="store_true",
        default=False,
        help="Cache the VAE latents",
    )

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    if args.dataset_name is None and args.instance_data_dir is None:
        raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`")

    if args.dataset_name is not None and args.instance_data_dir is not None:
        raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`")

    if args.train_text_encoder and args.train_text_encoder_ti:
        raise ValueError(
            "Specify only one of `--train_text_encoder` or `--train_text_encoder_ti. "
            "For full LoRA text encoder training check --train_text_encoder, for textual "
            "inversion training check `--train_text_encoder_ti`"
        )

    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

    return args


# Taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py
class TokenEmbeddingsHandler:
    def __init__(self, text_encoders, tokenizers):
        self.text_encoders = text_encoders
        self.tokenizers = tokenizers

        self.train_ids: Optional[torch.Tensor] = None
        self.inserting_toks: Optional[List[str]] = None
        self.embeddings_settings = {}

    def initialize_new_tokens(self, inserting_toks: List[str]):
        idx = 0
        for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
            assert isinstance(inserting_toks, list), "inserting_toks should be a list of strings."
            assert all(
                isinstance(tok, str) for tok in inserting_toks
            ), "All elements in inserting_toks should be strings."

            self.inserting_toks = inserting_toks
            special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
            tokenizer.add_special_tokens(special_tokens_dict)
            text_encoder.resize_token_embeddings(len(tokenizer))

            self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)

            # random initialization of new tokens
            std_token_embedding = text_encoder.text_model.embeddings.token_embedding.weight.data.std()

            print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}")

            text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids] = (
                torch.randn(len(self.train_ids), text_encoder.text_model.config.hidden_size)
                .to(device=self.device)
                .to(dtype=self.dtype)
                * std_token_embedding
            )
            self.embeddings_settings[
                f"original_embeddings_{idx}"
            ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone()
            self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding

            inu = torch.ones((len(tokenizer),), dtype=torch.bool)
            inu[self.train_ids] = False

            self.embeddings_settings[f"index_no_updates_{idx}"] = inu

            print(self.embeddings_settings[f"index_no_updates_{idx}"].shape)

            idx += 1

    def save_embeddings(self, file_path: str):
        assert self.train_ids is not None, "Initialize new tokens before saving embeddings."
        tensors = {}
        # text_encoder_0 - CLIP ViT-L/14, text_encoder_1 -  CLIP ViT-G/14
        idx_to_text_encoder_name = {0: "clip_l", 1: "clip_g"}
        for idx, text_encoder in enumerate(self.text_encoders):
            assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[0] == len(
                self.tokenizers[0]
            ), "Tokenizers should be the same."
            new_token_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids]

            # New tokens for each text encoder are saved under "clip_l" (for text_encoder 0), "clip_g" (for
            # text_encoder 1) to keep compatible with the ecosystem.
            # Note: When loading with diffusers, any name can work - simply specify in inference
            tensors[idx_to_text_encoder_name[idx]] = new_token_embeddings
            # tensors[f"text_encoders_{idx}"] = new_token_embeddings

        save_file(tensors, file_path)

    @property
    def dtype(self):
        return self.text_encoders[0].dtype

    @property
    def device(self):
        return self.text_encoders[0].device

    @torch.no_grad()
    def retract_embeddings(self):
        for idx, text_encoder in enumerate(self.text_encoders):
            index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"]
            text_encoder.text_model.embeddings.token_embedding.weight.data[index_no_updates] = (
                self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates]
                .to(device=text_encoder.device)
                .to(dtype=text_encoder.dtype)
            )

            # for the parts that were updated, we need to normalize them
            # to have the same std as before
            std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"]

            index_updates = ~index_no_updates
            new_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates]
            off_ratio = std_token_embedding / new_embeddings.std()

            new_embeddings = new_embeddings * (off_ratio**0.1)
            text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates] = new_embeddings


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        class_prompt,
        dataset_name,
        dataset_config_name,
        cache_dir,
        image_column,
        caption_column,
        train_text_encoder_ti,
        class_data_root=None,
        class_num=None,
        token_abstraction_dict=None,  # token mapping for textual inversion
        size=1024,
        repeats=1,
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop

        self.instance_prompt = instance_prompt
        self.custom_instance_prompts = None
        self.class_prompt = class_prompt
        self.token_abstraction_dict = token_abstraction_dict
        self.train_text_encoder_ti = train_text_encoder_ti
        # if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory,
        # we load the training data using load_dataset
        if dataset_name is not None:
            try:
                from datasets import load_dataset
            except ImportError:
                raise ImportError(
                    "You are trying to load your data using the datasets library. If you wish to train using custom "
                    "captions please install the datasets library: `pip install datasets`. If you wish to load a "
                    "local folder containing images only, specify --instance_data_dir instead."
                )
            # Downloading and loading a dataset from the hub.
            # See more about loading custom images at
            # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
            dataset = load_dataset(
                dataset_name,
                dataset_config_name,
                cache_dir=cache_dir,
            )
            # Preprocessing the datasets.
            column_names = dataset["train"].column_names

            # 6. Get the column names for input/target.
            if image_column is None:
                image_column = column_names[0]
                logger.info(f"image column defaulting to {image_column}")
            else:
                if image_column not in column_names:
                    raise ValueError(
                        f"`--image_column` value '{image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                    )
            instance_images = dataset["train"][image_column]

            if caption_column is None:
                logger.info(
                    "No caption column provided, defaulting to instance_prompt for all images. If your dataset "
                    "contains captions/prompts for the images, make sure to specify the "
                    "column as --caption_column"
                )
                self.custom_instance_prompts = None
            else:
                if caption_column not in column_names:
                    raise ValueError(
                        f"`--caption_column` value '{caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                    )
                custom_instance_prompts = dataset["train"][caption_column]
                # create final list of captions according to --repeats
                self.custom_instance_prompts = []
                for caption in custom_instance_prompts:
                    self.custom_instance_prompts.extend(itertools.repeat(caption, repeats))
        else:
            self.instance_data_root = Path(instance_data_root)
            if not self.instance_data_root.exists():
                raise ValueError("Instance images root doesn't exists.")

            instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())]
            self.custom_instance_prompts = None

        self.instance_images = []
        for img in instance_images:
            self.instance_images.extend(itertools.repeat(img, repeats))
        self.num_instance_images = len(self.instance_images)
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = self.instance_images[index % self.num_instance_images]
        instance_image = exif_transpose(instance_image)

        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)

        if self.custom_instance_prompts:
            caption = self.custom_instance_prompts[index % self.num_instance_images]
            if caption:
                if self.train_text_encoder_ti:
                    # replace instances of --token_abstraction in caption with the new tokens: "<si><si+1>" etc.
                    for token_abs, token_replacement in self.token_abstraction_dict.items():
                        caption = caption.replace(token_abs, "".join(token_replacement))
                example["instance_prompt"] = caption
            else:
                example["instance_prompt"] = self.instance_prompt

        else:  # costum prompts were provided, but length does not match size of image dataset
            example["instance_prompt"] = self.instance_prompt

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            class_image = exif_transpose(class_image)

            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt"] = self.class_prompt

        return example


def collate_fn(examples, with_prior_preservation=False):
    pixel_values = [example["instance_images"] for example in examples]
    prompts = [example["instance_prompt"] for example in examples]

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        pixel_values += [example["class_images"] for example in examples]
        prompts += [example["class_prompt"] for example in examples]

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    batch = {"pixel_values": pixel_values, "prompts": prompts}
    return batch


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


def tokenize_prompt(tokenizer, prompt, add_special_tokens=False):
    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        add_special_tokens=add_special_tokens,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids
    return text_input_ids


# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
    prompt_embeds_list = []

    for i, text_encoder in enumerate(text_encoders):
        if tokenizers is not None:
            tokenizer = tokenizers[i]
            text_input_ids = tokenize_prompt(tokenizer, prompt)
        else:
            assert text_input_ids_list is not None
            text_input_ids = text_input_ids_list[i]

        prompt_embeds = text_encoder(
            text_input_ids.to(text_encoder.device),
            output_hidden_states=True,
        )

        # We are only ALWAYS interested in the pooled output of the final text encoder
        pooled_prompt_embeds = prompt_embeds[0]
        prompt_embeds = prompt_embeds.hidden_states[-2]
        bs_embed, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
        prompt_embeds_list.append(prompt_embeds)

    prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
    pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
    return prompt_embeds, pooled_prompt_embeds


def main(args):
    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
    kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
        kwargs_handlers=[kwargs],
    )

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
            pipeline = StableDiffusionXLPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                revision=args.revision,
                variant=args.variant,
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        model_id = args.hub_model_id or Path(args.output_dir).name
        repo_id = None
        if args.push_to_hub:
            repo_id = create_repo(repo_id=model_id, exist_ok=True, token=args.hub_token).repo_id

    # Load the tokenizers
    tokenizer_one = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
        variant=args.variant,
        use_fast=False,
    )
    tokenizer_two = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=args.revision,
        variant=args.variant,
        use_fast=False,
    )

    # import correct text encoder classes
    text_encoder_cls_one = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision
    )
    text_encoder_cls_two = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
    )

    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder_one = text_encoder_cls_one.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
    )
    text_encoder_two = text_encoder_cls_two.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
    )
    vae_path = (
        args.pretrained_model_name_or_path
        if args.pretrained_vae_model_name_or_path is None
        else args.pretrained_vae_model_name_or_path
    )
    vae = AutoencoderKL.from_pretrained(
        vae_path,
        subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
        revision=args.revision,
        variant=args.variant,
    )
    vae_scaling_factor = vae.config.scaling_factor
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
    )

    if args.train_text_encoder_ti:
        # we parse the provided token identifier (or identifiers) into a list. s.t. - "TOK" -> ["TOK"], "TOK,
        # TOK2" -> ["TOK", "TOK2"] etc.
        token_abstraction_list = "".join(args.token_abstraction.split()).split(",")
        logger.info(f"list of token identifiers: {token_abstraction_list}")

        token_abstraction_dict = {}
        token_idx = 0
        for i, token in enumerate(token_abstraction_list):
            token_abstraction_dict[token] = [
                f"<s{token_idx + i + j}>" for j in range(args.num_new_tokens_per_abstraction)
            ]
            token_idx += args.num_new_tokens_per_abstraction - 1

        # replace instances of --token_abstraction in --instance_prompt with the new tokens: "<si><si+1>" etc.
        for token_abs, token_replacement in token_abstraction_dict.items():
            args.instance_prompt = args.instance_prompt.replace(token_abs, "".join(token_replacement))
            if args.with_prior_preservation:
                args.class_prompt = args.class_prompt.replace(token_abs, "".join(token_replacement))

        # initialize the new tokens for textual inversion
        embedding_handler = TokenEmbeddingsHandler(
            [text_encoder_one, text_encoder_two], [tokenizer_one, tokenizer_two]
        )
        inserting_toks = []
        for new_tok in token_abstraction_dict.values():
            inserting_toks.extend(new_tok)
        embedding_handler.initialize_new_tokens(inserting_toks=inserting_toks)

    # We only train the additional adapter LoRA layers
    vae.requires_grad_(False)
    text_encoder_one.requires_grad_(False)
    text_encoder_two.requires_grad_(False)
    unet.requires_grad_(False)

    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)

    # The VAE is always in float32 to avoid NaN losses.
    vae.to(accelerator.device, dtype=torch.float32)

    text_encoder_one.to(accelerator.device, dtype=weight_dtype)
    text_encoder_two.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, "
                    "please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder_one.gradient_checkpointing_enable()
            text_encoder_two.gradient_checkpointing_enable()

    # now we will add new LoRA weights to the attention layers
    unet_lora_config = LoraConfig(
        r=args.rank,
        lora_alpha=args.rank,
        init_lora_weights="gaussian",
        target_modules=["to_k", "to_q", "to_v", "to_out.0"],
    )
    unet.add_adapter(unet_lora_config)

    # The text encoder comes from 🤗 transformers, so we cannot directly modify it.
    # So, instead, we monkey-patch the forward calls of its attention-blocks.
    if args.train_text_encoder:
        text_lora_config = LoraConfig(
            r=args.rank,
            lora_alpha=args.rank,
            init_lora_weights="gaussian",
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
        )
        text_encoder_one.add_adapter(text_lora_config)
        text_encoder_two.add_adapter(text_lora_config)

    # if we use textual inversion, we freeze all parameters except for the token embeddings
    # in text encoder
    elif args.train_text_encoder_ti:
        text_lora_parameters_one = []
        for name, param in text_encoder_one.named_parameters():
            if "token_embedding" in name:
                # ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
                param.data = param.to(dtype=torch.float32)
                param.requires_grad = True
                text_lora_parameters_one.append(param)
            else:
                param.requires_grad = False
        text_lora_parameters_two = []
        for name, param in text_encoder_two.named_parameters():
            if "token_embedding" in name:
                # ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
                param.data = param.to(dtype=torch.float32)
                param.requires_grad = True
                text_lora_parameters_two.append(param)
            else:
                param.requires_grad = False

    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        if accelerator.is_main_process:
            # there are only two options here. Either are just the unet attn processor layers
            # or there are the unet and text encoder atten layers
            unet_lora_layers_to_save = None
            text_encoder_one_lora_layers_to_save = None
            text_encoder_two_lora_layers_to_save = None

            for model in models:
                if isinstance(model, type(unwrap_model(unet))):
                    unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
                elif isinstance(model, type(unwrap_model(text_encoder_one))):
                    if args.train_text_encoder:
                        text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers(
                            get_peft_model_state_dict(model)
                        )
                elif isinstance(model, type(unwrap_model(text_encoder_two))):
                    if args.train_text_encoder:
                        text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers(
                            get_peft_model_state_dict(model)
                        )
                else:
                    raise ValueError(f"unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            StableDiffusionXLPipeline.save_lora_weights(
                output_dir,
                unet_lora_layers=unet_lora_layers_to_save,
                text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
                text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save,
            )
        if args.train_text_encoder_ti:
            embedding_handler.save_embeddings(f"{output_dir}/{args.output_dir}_emb.safetensors")

    def load_model_hook(models, input_dir):
        unet_ = None
        text_encoder_one_ = None
        text_encoder_two_ = None

        while len(models) > 0:
            model = models.pop()

            if isinstance(model, type(unwrap_model(unet))):
                unet_ = model
            elif isinstance(model, type(unwrap_model(text_encoder_one))):
                text_encoder_one_ = model
            elif isinstance(model, type(unwrap_model(text_encoder_two))):
                text_encoder_two_ = model
            else:
                raise ValueError(f"unexpected save model: {model.__class__}")

        lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)

        unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
        unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
        incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")
        if incompatible_keys is not None:
            # check only for unexpected keys
            unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
            if unexpected_keys:
                logger.warning(
                    f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                    f" {unexpected_keys}. "
                )

        if args.train_text_encoder:
            _set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_)

            _set_state_dict_into_text_encoder(
                lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_two_
            )

        # Make sure the trainable params are in float32. This is again needed since the base models
        # are in `weight_dtype`. More details:
        # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
        if args.mixed_precision == "fp16":
            models = [unet_]
            if args.train_text_encoder:
                models.extend([text_encoder_one_, text_encoder_two_])
            cast_training_params(models)

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Make sure the trainable params are in float32.
    if args.mixed_precision == "fp16":
        models = [unet]
        if args.train_text_encoder:
            models.extend([text_encoder_one, text_encoder_two])
        cast_training_params(models, dtype=torch.float32)

    unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))

    if args.train_text_encoder:
        text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
        text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))

    # If neither --train_text_encoder nor --train_text_encoder_ti, text_encoders remain frozen during training
    freeze_text_encoder = not (args.train_text_encoder or args.train_text_encoder_ti)

    # Optimization parameters
    unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate}
    if not freeze_text_encoder:
        # different learning rate for text encoder and unet
        text_lora_parameters_one_with_lr = {
            "params": text_lora_parameters_one,
            "weight_decay": args.adam_weight_decay_text_encoder
            if args.adam_weight_decay_text_encoder
            else args.adam_weight_decay,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        text_lora_parameters_two_with_lr = {
            "params": text_lora_parameters_two,
            "weight_decay": args.adam_weight_decay_text_encoder
            if args.adam_weight_decay_text_encoder
            else args.adam_weight_decay,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        params_to_optimize = [
            unet_lora_parameters_with_lr,
            text_lora_parameters_one_with_lr,
            text_lora_parameters_two_with_lr,
        ]
    else:
        params_to_optimize = [unet_lora_parameters_with_lr]

    # Optimizer creation
    if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
        logger.warn(
            f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
            "Defaulting to adamW"
        )
        args.optimizer = "adamw"

    if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
        logger.warn(
            f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
            f"set to {args.optimizer.lower()}"
        )

    if args.optimizer.lower() == "adamw":
        if args.use_8bit_adam:
            try:
                import bitsandbytes as bnb
            except ImportError:
                raise ImportError(
                    "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
                )

            optimizer_class = bnb.optim.AdamW8bit
        else:
            optimizer_class = torch.optim.AdamW

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
        )

    if args.optimizer.lower() == "prodigy":
        try:
            import prodigyopt
        except ImportError:
            raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")

        optimizer_class = prodigyopt.Prodigy

        if args.learning_rate <= 0.1:
            logger.warn(
                "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
            )
        if args.train_text_encoder and args.text_encoder_lr:
            logger.warn(
                f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:"
                f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. "
                f"When using prodigy only learning_rate is used as the initial learning rate."
            )
            # changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be
            # --learning_rate
            params_to_optimize[1]["lr"] = args.learning_rate
            params_to_optimize[2]["lr"] = args.learning_rate

        optimizer = optimizer_class(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            beta3=args.prodigy_beta3,
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            decouple=args.prodigy_decouple,
            use_bias_correction=args.prodigy_use_bias_correction,
            safeguard_warmup=args.prodigy_safeguard_warmup,
        )

    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_prompt=args.class_prompt,
        dataset_name=args.dataset_name,
        dataset_config_name=args.dataset_config_name,
        cache_dir=args.cache_dir,
        image_column=args.image_column,
        train_text_encoder_ti=args.train_text_encoder_ti,
        caption_column=args.caption_column,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        token_abstraction_dict=token_abstraction_dict if args.train_text_encoder_ti else None,
        class_num=args.num_class_images,
        size=args.resolution,
        repeats=args.repeats,
        center_crop=args.center_crop,
    )

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
        num_workers=args.dataloader_num_workers,
    )

    # Computes additional embeddings/ids required by the SDXL UNet.
    # regular text embeddings (when `train_text_encoder` is not True)
    # pooled text embeddings
    # time ids

    def compute_time_ids():
        # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
        original_size = (args.resolution, args.resolution)
        target_size = (args.resolution, args.resolution)
        crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w)
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids])
        add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
        return add_time_ids

    if not args.train_text_encoder:
        tokenizers = [tokenizer_one, tokenizer_two]
        text_encoders = [text_encoder_one, text_encoder_two]

        def compute_text_embeddings(prompt, text_encoders, tokenizers):
            with torch.no_grad():
                prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
                prompt_embeds = prompt_embeds.to(accelerator.device)
                pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
            return prompt_embeds, pooled_prompt_embeds

    # Handle instance prompt.
    instance_time_ids = compute_time_ids()

    # If no type of tuning is done on the text_encoder and custom instance prompts are NOT
    # provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid
    # the redundant encoding.
    if freeze_text_encoder and not train_dataset.custom_instance_prompts:
        instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings(
            args.instance_prompt, text_encoders, tokenizers
        )

    # Handle class prompt for prior-preservation.
    if args.with_prior_preservation:
        class_time_ids = compute_time_ids()
        if freeze_text_encoder:
            class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings(
                args.class_prompt, text_encoders, tokenizers
            )

    # Clear the memory here
    if freeze_text_encoder and not train_dataset.custom_instance_prompts:
        del tokenizers, text_encoders
        gc.collect()
        torch.cuda.empty_cache()

    # If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images),
    # pack the statically computed variables appropriately here. This is so that we don't
    # have to pass them to the dataloader.
    add_time_ids = instance_time_ids
    if args.with_prior_preservation:
        add_time_ids = torch.cat([add_time_ids, class_time_ids], dim=0)

    # if --train_text_encoder_ti we need add_special_tokens to be True fo textual inversion
    add_special_tokens = True if args.train_text_encoder_ti else False

    if not train_dataset.custom_instance_prompts:
        if freeze_text_encoder:
            prompt_embeds = instance_prompt_hidden_states
            unet_add_text_embeds = instance_pooled_prompt_embeds
            if args.with_prior_preservation:
                prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0)
                unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0)
        # if we're optmizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the
        # batch prompts on all training steps
        else:
            tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt, add_special_tokens)
            tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt, add_special_tokens)
            if args.with_prior_preservation:
                class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt, add_special_tokens)
                class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt, add_special_tokens)
                tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0)
                tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0)

    if args.train_text_encoder_ti and args.validation_prompt:
        # replace instances of --token_abstraction in validation prompt with the new tokens: "<si><si+1>" etc.
        for token_abs, token_replacement in train_dataset.token_abstraction_dict.items():
            args.validation_prompt = args.validation_prompt.replace(token_abs, "".join(token_replacement))
    print("validation prompt:", args.validation_prompt)

    if args.cache_latents:
        latents_cache = []
        for batch in tqdm(train_dataloader, desc="Caching latents"):
            with torch.no_grad():
                batch["pixel_values"] = batch["pixel_values"].to(
                    accelerator.device, non_blocking=True, dtype=torch.float32
                )
                latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist)

        if args.validation_prompt is None:
            del vae
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
    if not freeze_text_encoder:
        unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth-lora-sd-xl", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch

    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )

    if args.train_text_encoder:
        num_train_epochs_text_encoder = int(args.train_text_encoder_frac * args.num_train_epochs)
    elif args.train_text_encoder_ti:  # args.train_text_encoder_ti
        num_train_epochs_text_encoder = int(args.train_text_encoder_ti_frac * args.num_train_epochs)
    # flag used for textual inversion
    pivoted = False
    for epoch in range(first_epoch, args.num_train_epochs):
        # if performing any kind of optimization of text_encoder params
        if args.train_text_encoder or args.train_text_encoder_ti:
            if epoch == num_train_epochs_text_encoder:
                print("PIVOT HALFWAY", epoch)
                # stopping optimization of text_encoder params
                # this flag is used to reset the optimizer to optimize only on unet params
                pivoted = True

            else:
                # still optimizing the text encoder
                text_encoder_one.train()
                text_encoder_two.train()
                # set top parameter requires_grad = True for gradient checkpointing works
                if args.train_text_encoder:
                    text_encoder_one.text_model.embeddings.requires_grad_(True)
                    text_encoder_two.text_model.embeddings.requires_grad_(True)

        unet.train()
        for step, batch in enumerate(train_dataloader):
            if pivoted:
                # stopping optimization of text_encoder params
                # re setting the optimizer to optimize only on unet params
                optimizer.param_groups[1]["lr"] = 0.0
                optimizer.param_groups[2]["lr"] = 0.0

            with accelerator.accumulate(unet):
                prompts = batch["prompts"]
                # encode batch prompts when custom prompts are provided for each image -
                if train_dataset.custom_instance_prompts:
                    if freeze_text_encoder:
                        prompt_embeds, unet_add_text_embeds = compute_text_embeddings(
                            prompts, text_encoders, tokenizers
                        )

                    else:
                        tokens_one = tokenize_prompt(tokenizer_one, prompts, add_special_tokens)
                        tokens_two = tokenize_prompt(tokenizer_two, prompts, add_special_tokens)

                if args.cache_latents:
                    model_input = latents_cache[step].sample()
                else:
                    pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
                    model_input = vae.encode(pixel_values).latent_dist.sample()

                model_input = model_input * vae_scaling_factor
                if args.pretrained_vae_model_name_or_path is None:
                    model_input = model_input.to(weight_dtype)

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(model_input)
                if args.noise_offset:
                    # https://www.crosslabs.org//blog/diffusion-with-offset-noise
                    noise += args.noise_offset * torch.randn(
                        (model_input.shape[0], model_input.shape[1], 1, 1), device=model_input.device
                    )

                bsz = model_input.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
                timesteps = timesteps.long()

                # Add noise to the model input according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)

                # Calculate the elements to repeat depending on the use of prior-preservation and custom captions.
                if not train_dataset.custom_instance_prompts:
                    elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz
                    elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz

                else:
                    elems_to_repeat_text_embeds = 1
                    elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz

                # Predict the noise residual
                if freeze_text_encoder:
                    unet_added_conditions = {
                        "time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1),
                        "text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1),
                    }
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
                    model_pred = unet(
                        noisy_model_input,
                        timesteps,
                        prompt_embeds_input,
                        added_cond_kwargs=unet_added_conditions,
                    ).sample
                else:
                    unet_added_conditions = {"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1)}
                    prompt_embeds, pooled_prompt_embeds = encode_prompt(
                        text_encoders=[text_encoder_one, text_encoder_two],
                        tokenizers=None,
                        prompt=None,
                        text_input_ids_list=[tokens_one, tokens_two],
                    )
                    unet_added_conditions.update(
                        {"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)}
                    )
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
                    model_pred = unet(
                        noisy_model_input, timesteps, prompt_embeds_input, added_cond_kwargs=unet_added_conditions
                    ).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)

                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

                if args.snr_gamma is None:
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.

                    if args.with_prior_preservation:
                        # if we're using prior preservation, we calc snr for instance loss only -
                        # and hence only need timesteps corresponding to instance images
                        snr_timesteps, _ = torch.chunk(timesteps, 2, dim=0)
                    else:
                        snr_timesteps = timesteps

                    snr = compute_snr(noise_scheduler, snr_timesteps)
                    base_weight = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(snr_timesteps)], dim=1).min(dim=1)[0] / snr
                    )

                    if noise_scheduler.config.prediction_type == "v_prediction":
                        # Velocity objective needs to be floored to an SNR weight of one.
                        mse_loss_weights = base_weight + 1
                    else:
                        # Epsilon and sample both use the same loss weights.
                        mse_loss_weights = base_weight

                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()

                if args.with_prior_preservation:
                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss

                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    params_to_clip = (
                        itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two)
                        if (args.train_text_encoder or args.train_text_encoder_ti)
                        else unet_lora_parameters
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

                # every step, we reset the embeddings to the original embeddings.
                if args.train_text_encoder_ti:
                    embedding_handler.retract_embeddings()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

        if accelerator.is_main_process:
            if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
                logger.info(
                    f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
                    f" {args.validation_prompt}."
                )
                # create pipeline
                if freeze_text_encoder:
                    text_encoder_one = text_encoder_cls_one.from_pretrained(
                        args.pretrained_model_name_or_path,
                        subfolder="text_encoder",
                        revision=args.revision,
                        variant=args.variant,
                    )
                    text_encoder_two = text_encoder_cls_two.from_pretrained(
                        args.pretrained_model_name_or_path,
                        subfolder="text_encoder_2",
                        revision=args.revision,
                        variant=args.variant,
                    )
                pipeline = StableDiffusionXLPipeline.from_pretrained(
                    args.pretrained_model_name_or_path,
                    vae=vae,
                    text_encoder=accelerator.unwrap_model(text_encoder_one),
                    text_encoder_2=accelerator.unwrap_model(text_encoder_two),
                    unet=accelerator.unwrap_model(unet),
                    revision=args.revision,
                    variant=args.variant,
                    torch_dtype=weight_dtype,
                )

                # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
                scheduler_args = {}

                if "variance_type" in pipeline.scheduler.config:
                    variance_type = pipeline.scheduler.config.variance_type

                    if variance_type in ["learned", "learned_range"]:
                        variance_type = "fixed_small"

                    scheduler_args["variance_type"] = variance_type

                pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
                    pipeline.scheduler.config, **scheduler_args
                )

                pipeline = pipeline.to(accelerator.device)
                pipeline.set_progress_bar_config(disable=True)

                # run inference
                generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
                pipeline_args = {"prompt": args.validation_prompt}

                with torch.cuda.amp.autocast():
                    images = [
                        pipeline(**pipeline_args, generator=generator).images[0]
                        for _ in range(args.num_validation_images)
                    ]

                for tracker in accelerator.trackers:
                    if tracker.name == "tensorboard":
                        np_images = np.stack([np.asarray(img) for img in images])
                        tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
                    if tracker.name == "wandb":
                        tracker.log(
                            {
                                "validation": [
                                    wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                    for i, image in enumerate(images)
                                ]
                            }
                        )

                del pipeline
                torch.cuda.empty_cache()

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = accelerator.unwrap_model(unet)
        unet = unet.to(torch.float32)
        unet_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet))

        if args.train_text_encoder:
            text_encoder_one = accelerator.unwrap_model(text_encoder_one)
            text_encoder_lora_layers = convert_state_dict_to_diffusers(
                get_peft_model_state_dict(text_encoder_one.to(torch.float32))
            )
            text_encoder_two = accelerator.unwrap_model(text_encoder_two)
            text_encoder_2_lora_layers = convert_state_dict_to_diffusers(
                get_peft_model_state_dict(text_encoder_two.to(torch.float32))
            )
        else:
            text_encoder_lora_layers = None
            text_encoder_2_lora_layers = None

        StableDiffusionXLPipeline.save_lora_weights(
            save_directory=args.output_dir,
            unet_lora_layers=unet_lora_layers,
            text_encoder_lora_layers=text_encoder_lora_layers,
            text_encoder_2_lora_layers=text_encoder_2_lora_layers,
        )
        images = []
        if args.validation_prompt and args.num_validation_images > 0:
            # Final inference
            # Load previous pipeline
            vae = AutoencoderKL.from_pretrained(
                vae_path,
                subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
                revision=args.revision,
                variant=args.variant,
                torch_dtype=weight_dtype,
            )
            pipeline = StableDiffusionXLPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                vae=vae,
                revision=args.revision,
                variant=args.variant,
                torch_dtype=weight_dtype,
            )

            # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
            scheduler_args = {}

            if "variance_type" in pipeline.scheduler.config:
                variance_type = pipeline.scheduler.config.variance_type

                if variance_type in ["learned", "learned_range"]:
                    variance_type = "fixed_small"

                scheduler_args["variance_type"] = variance_type

            pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)

            # load attention processors
            pipeline.load_lora_weights(args.output_dir)

            # run inference
            pipeline = pipeline.to(accelerator.device)
            generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
            images = [
                pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                for _ in range(args.num_validation_images)
            ]

            for tracker in accelerator.trackers:
                if tracker.name == "tensorboard":
                    np_images = np.stack([np.asarray(img) for img in images])
                    tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
                if tracker.name == "wandb":
                    tracker.log(
                        {
                            "test": [
                                wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                for i, image in enumerate(images)
                            ]
                        }
                    )

        if args.train_text_encoder_ti:
            embedding_handler.save_embeddings(
                f"{args.output_dir}/{args.output_dir}_emb.safetensors",
            )

        # Conver to WebUI format
        lora_state_dict = load_file(f"{args.output_dir}/pytorch_lora_weights.safetensors")
        peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict)
        kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict)
        save_file(kohya_state_dict, f"{args.output_dir}/{args.output_dir}.safetensors")

        save_model_card(
            model_id if not args.push_to_hub else repo_id,
            images=images,
            base_model=args.pretrained_model_name_or_path,
            train_text_encoder=args.train_text_encoder,
            train_text_encoder_ti=args.train_text_encoder_ti,
            token_abstraction_dict=train_dataset.token_abstraction_dict,
            instance_prompt=args.instance_prompt,
            validation_prompt=args.validation_prompt,
            repo_folder=args.output_dir,
            vae_path=args.pretrained_vae_model_name_or_path,
        )
        if args.push_to_hub:
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)