ChristophSchuhmann
commited on
Commit
•
f9b152c
1
Parent(s):
12a1515
Upload 4 files
Browse files- .gitattributes +1 -0
- emo-image-links (1).csv +3 -0
- mean_sims.npy +3 -0
- std_dev_sims.npy +3 -0
- zero.py +174 -0
.gitattributes
CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
emo-image-links[[:space:]](1).csv filter=lfs diff=lfs merge=lfs -text
|
emo-image-links (1).csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b801337488fe1aa001878cf27c08c6567fe928a58a33360343706166779ccba8
|
3 |
+
size 23988668
|
mean_sims.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b77dde5d3c4d20aae5d2dc5b04377366bcf2ae9f492ee50754757c0c6f38cf98
|
3 |
+
size 1456
|
std_dev_sims.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f7bda8e3efef7f6b2ca077e95739385d26b46550b59893f7a0a5213812cd825
|
3 |
+
size 1456
|
zero.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
emotions = [
|
2 |
+
'tart', 'acidic', 'bitter', 'tangy', 'vinegary', 'sharp',
|
3 |
+
'thankful', 'appreciative', 'obliged', 'indebted', 'gratified', 'recognizant',
|
4 |
+
'dignified', 'haughty', 'arrogant', 'self-satisfied', 'vain', 'honored',
|
5 |
+
'repulsed', 'appalled', 'revolted', 'nauseated', 'repelled', 'sickened', 'ebullient', 'merry', 'jovial', 'cheerful', 'lighthearted', 'joyful', 'beaming', 'grinning', 'elated', 'gleeful', 'happy', 'hopeful', 'gratitude', 'thankful', 'buoyant', 'upbeat', 'vibrant', 'radiant', 'exuberant', 'zestful', 'chirpy', 'peppy', 'jaunty', 'sprightly', 'brisk', 'lively', 'animated', 'energized', 'revitalized', 'invigorated', 'activated', 'energetic', 'dynamic', 'electrified', 'bouncy', 'effervescent', 'chipper', 'jubilant',
|
6 |
+
'mindful', 'unruffled', 'coolheaded', 'level headed', 'poised', 'self-possessed', 'unflappable', 'collected', 'unperturbed', 'untroubled', 'unrattled', 'unshaken', 'unflustered', 'composed', 'relaxed', 'tranquil', 'serene', 'calm', 'centered', 'peaceful', 'imperturbable', 'reposeful', 'grounded', 'equanimous', 'harmonious',
|
7 |
+
'engaging', 'focused', 'watchful', 'attentive', 'heedful', 'scrutinizing', 'investigating', 'alert', 'studious', 'analyzing', 'examining', 'cognizant', 'inquiring', 'questioning', 'probing', 'introspecting', 'introspective', 'observant',
|
8 |
+
'wondering', 'awe', 'intrigued', 'spellbinding', 'fascinated', 'mesmerized', 'captivated', 'bewitching', 'beguiling', 'agog', 'marveling', 'gazing', 'mystified', 'curious', 'riveted', 'enrapturing', 'entrancing', 'hypnotic', 'mesmerizing', 'alluring', 'enthralled',
|
9 |
+
'pensive', 'ruminative', 'brooding', 'contemplating', 'meditative', 'reflective', 'pondering', 'cogitating', 'speculative',
|
10 |
+
'trembling', 'shuddery', 'afraid', 'spooked', 'apprehensive', 'fearful', 'terrorized', 'petrified', 'scared', 'horror-struck', 'quavering', 'shuddering', 'frightened', 'trepid', 'distraught', 'alarmed', 'fear-stricken', 'quaking', 'anxious', 'nervous', 'uneasy', 'worried', 'tense', 'jittery', 'jumpy', 'startled', 'edgy', 'antsy', 'rattled', 'distracted', 'disquieted', 'skittish', 'restless', 'restive', 'panic-stricken', 'panicked',
|
11 |
+
'dumbstruck', 'bewildered', 'dumbfounded', 'stunned', 'stupefied', 'thunderstruck', 'staggered', 'amazed', 'astonished', 'astounded', 'surprised', 'shocked', 'flabbergasted', 'befuddled', 'perplexed', 'puzzled', 'confounded', 'baffled', 'discombobulated', 'flummoxed',
|
12 |
+
'sad', 'dismal', 'forlorn', 'depressed', 'woebegone', 'plaintive', 'sorrowful', 'gloomy', 'lugubrious', 'melancholic', 'blue', 'desolate', 'miserable', 'downhearted', 'morose', 'somber', 'despairing', 'woeful', 'heartbroken', 'crestfallen', 'dispirited',
|
13 |
+
'romantic', 'amorous', 'passionate', 'sensual', 'erotic', 'sultry', 'salacious', 'libidinous', 'sensuous', 'carnal', 'lustful', 'infatuated', 'desirous', 'lecherous', 'lust-driven', 'prurient', 'enflamed', 'voluptuous', 'sizzling', 'torrid', 'steaminess',
|
14 |
+
'seductive', 'titillating', 'awakened', 'ravishing', 'enticing', 'charming', 'irresistible', 'provoked', 'craving', 'stimulated', 'aroused', 'magnetic', 'compelling', 'flirty', 'bellicose',
|
15 |
+
'aggravated', 'perturbed', 'enraged', 'furious', 'irate', 'incensed', 'infuriated', 'wrathful', 'livid', 'cross', 'galled', 'resentful', 'bitter', 'indignant', 'outraged', 'exasperated', 'maddened', 'angry', 'annoyed', 'vexed', 'truculent', 'spiky', 'prickly', 'snarly', 'huffy', 'nettled', 'irritable', 'piqued', 'snappish', 'irascible', 'testy', 'nerved',
|
16 |
+
'persistent', 'resilient', 'determined', 'unfailing', 'unyielding', 'tenacious', 'steadfast', 'adamant', 'resolute', 'undaunted', 'unwavering', 'unswerving', 'unflinching', 'unrelenting', 'enduring', 'indefatigable', 'motivated', 'driven',
|
17 |
+
'discomposed', 'nonplussed', 'disconcerted', 'disturbed', 'ruffled', 'troubled', 'stressed', 'fractious', 'cringing', 'quailing', 'cowering', 'daunted', 'dread-filled', 'intimidated', 'unnerved', 'unsettled', 'fretful', 'ticked-off', 'flustered',
|
18 |
+
'belligerent', 'pugnacious', 'contentious', 'quarrelsome', 'grumpy', 'grouchy', 'sulky', 'cranky', 'crabby', 'cantankerous', 'curmudgeonly', 'waspy', 'combative', 'argumentative', 'scrappy'
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import open_clip
|
26 |
+
import requests
|
27 |
+
from PIL import Image
|
28 |
+
from torchvision.transforms.functional import to_pil_image
|
29 |
+
import matplotlib.pyplot as plt
|
30 |
+
import seaborn as sns
|
31 |
+
import numpy as np
|
32 |
+
import requests
|
33 |
+
from PIL import Image
|
34 |
+
from IPython.display import display
|
35 |
+
from io import BytesIO
|
36 |
+
|
37 |
+
|
38 |
+
# Load the CLIP model and tokenizer
|
39 |
+
model_clip, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:apple/DFN5B-CLIP-ViT-H-14-378')
|
40 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:apple/DFN5B-CLIP-ViT-H-14-378')
|
41 |
+
|
42 |
+
# Function to download image from URL
|
43 |
+
def download_image(image_url):
|
44 |
+
response = requests.get(image_url, timeout=1)
|
45 |
+
response.raise_for_status()
|
46 |
+
return Image.open(requests.get(image_url, stream=True).raw)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
# Diese Funktion konvertiert PyTorch-Tensoren in Numpy-Arrays und löscht die Tensoren
|
51 |
+
def tensor_to_array(tensor):
|
52 |
+
array = tensor.detach().cpu().numpy()
|
53 |
+
del tensor # Lösche den Tensor, um Speicher freizugeben
|
54 |
+
return array
|
55 |
+
|
56 |
+
# Softmax-Funktion für Numpy-Arrays
|
57 |
+
def softmax(x):
|
58 |
+
e_x = np.exp(x - np.max(x))
|
59 |
+
return e_x / e_x.sum(axis=-1, keepdims=True)
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
'''
|
65 |
+
|
66 |
+
# Tokenize the prompts
|
67 |
+
text = tokenizer(emotions)
|
68 |
+
|
69 |
+
with torch.no_grad():
|
70 |
+
|
71 |
+
text_features = model_clip.encode_text(text)
|
72 |
+
|
73 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
74 |
+
text_features = tensor_to_array(text_features)
|
75 |
+
|
76 |
+
# Save the NumPy array to a file
|
77 |
+
np.save('text_features.npy', text_features)
|
78 |
+
'''
|
79 |
+
|
80 |
+
# Later or elsewhere in your code, load the NumPy array from the file
|
81 |
+
text_features = np.load('text_features.npy')
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def zeroshot_classifier(image_url):
|
86 |
+
# Download and preprocess the image
|
87 |
+
|
88 |
+
image = download_image(image_url)
|
89 |
+
image_preprocessed = preprocess_val(image).unsqueeze(0)
|
90 |
+
image_features = model_clip.encode_image(image_preprocessed)
|
91 |
+
image_features = tensor_to_array(image_features) # Konvertieren in Numpy-Array
|
92 |
+
image_features /= np.linalg.norm(image_features, axis=-1, keepdims=True)
|
93 |
+
|
94 |
+
|
95 |
+
# Load the mean_sims array from the file
|
96 |
+
loaded_mean_sims = np.load('mean_sims.npy')
|
97 |
+
#print("Loaded Mean Similarity Scores:", loaded_mean_sims)
|
98 |
+
loaded_stdev_sims = np.load('std_dev_sims.npy')
|
99 |
+
sims =np.matmul(image_features, text_features.T)
|
100 |
+
normalized_sims = (sims - loaded_mean_sims) / loaded_stdev_sims
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
# Hier sollten Sie auch die Textfeatures in Numpy-Arrays konvertieren, bevor Sie diese Funktion verwenden.
|
105 |
+
text_probs = softmax(100.0 * sims)
|
106 |
+
return text_probs, sims
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
def display_image_from_url(url, base_width=300):
|
111 |
+
try:
|
112 |
+
# Send a HTTP request to the URL
|
113 |
+
response = requests.get(url)
|
114 |
+
# Raise an exception if the request was unsuccessful
|
115 |
+
response.raise_for_status()
|
116 |
+
|
117 |
+
# Open the image from the bytes in the response content
|
118 |
+
img = Image.open(BytesIO(response.content))
|
119 |
+
|
120 |
+
# Calculate the new height to maintain the aspect ratio
|
121 |
+
w_percent = (base_width / float(img.size[0]))
|
122 |
+
h_size = int((float(img.size[1]) * float(w_percent)))
|
123 |
+
|
124 |
+
# Resize the image
|
125 |
+
img = img.resize((base_width, h_size), Image.ANTIALIAS)
|
126 |
+
|
127 |
+
# Display the image
|
128 |
+
#display(img)
|
129 |
+
except:
|
130 |
+
pass
|
131 |
+
|
132 |
+
|
133 |
+
import pandas as pd
|
134 |
+
|
135 |
+
# Read the CSV file
|
136 |
+
#df = pd.read_csv('emo-image-links (1).csv')
|
137 |
+
|
138 |
+
#urls = df["url"].tolist()[:1000]
|
139 |
+
|
140 |
+
|
141 |
+
urls=["https://i.imgur.com/lQCGbw9.png","https://i.imgur.com/saUX1yc.png", 'https://media.gettyimages.com/id/1027697458/de/foto/nostalgische-frau.jpg?s=1024x1024&w=gi&k=20&c=eJlr2c7K1_nFAfv0Sdt6sn4yhz6K_Y78rKbJMvoXlFs=', "https://i.imgur.com/BI3zkNG.jpg", "https://i.imgur.com/3WbnImZ.jpg","https://i.imgur.com/78IlUDZ.png","https://i.imgur.com/29FZiD9.jpg","https://i.imgur.com/2fun8N3.png","https://i.imgur.com/lGLpebl.jpg","https://imagizer.imageshack.com/img924/7428/HH6wua.png","https://i.imgur.com/F22ZjZw.jpg","https://i.imgur.com/HPJQCEp.jpg","https://i.imgur.com/XtSd4pO.png"]
|
142 |
+
simlist=[]
|
143 |
+
for url in urls:
|
144 |
+
#display_image_from_url(url)
|
145 |
+
print("##############")
|
146 |
+
print(url)
|
147 |
+
try:
|
148 |
+
probs, sims = zeroshot_classifier(url)
|
149 |
+
except:
|
150 |
+
continue
|
151 |
+
#print(sims)
|
152 |
+
simlist.append(sims)
|
153 |
+
for i in range (probs.shape[1]):
|
154 |
+
if probs[0][i]>0.05:
|
155 |
+
print(probs[0][i],emotions[i])
|
156 |
+
|
157 |
+
# Convert simlist to a NumPy array
|
158 |
+
simlist_array = np.array(simlist)
|
159 |
+
|
160 |
+
# Calculate the standard deviation
|
161 |
+
std_dev = np.std(simlist_array, axis=0)
|
162 |
+
|
163 |
+
print("Standard Deviation of similarity scores:", std_dev)
|
164 |
+
|
165 |
+
mean_sims = np.mean(np.array(simlist), axis=0)
|
166 |
+
#print("Mean similarity scores:", mean_sims)
|
167 |
+
|
168 |
+
# Save the mean_sims array to a file
|
169 |
+
#np.save('mean_sims.npy', mean_sims)
|
170 |
+
|
171 |
+
# Save the mean_sims array to a file
|
172 |
+
#np.save('std_dev_sims.npy', std_dev)
|
173 |
+
|
174 |
+
|