Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K<n<10K
License:
Commit
•
748e977
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/1.1.0/dummy_data.zip +3 -0
- trec.py +170 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set. The dataset has 6 labels, 47 level-2 labels. Average length of each sentence is 10, vocabulary size of 8700.\n\nData are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set.\n", "citation": "@inproceedings{li-roth-2002-learning,\n title = \"Learning Question Classifiers\",\n author = \"Li, Xin and\n Roth, Dan\",\n booktitle = \"{COLING} 2002: The 19th International Conference on Computational Linguistics\",\n year = \"2002\",\n url = \"https://www.aclweb.org/anthology/C02-1150\",\n}\n@inproceedings{hovy-etal-2001-toward,\n title = \"Toward Semantics-Based Answer Pinpointing\",\n author = \"Hovy, Eduard and\n Gerber, Laurie and\n Hermjakob, Ulf and\n Lin, Chin-Yew and\n Ravichandran, Deepak\",\n booktitle = \"Proceedings of the First International Conference on Human Language Technology Research\",\n year = \"2001\",\n url = \"https://www.aclweb.org/anthology/H01-1069\",\n}\n", "homepage": "https://cogcomp.seas.upenn.edu/Data/QA/QC/", "license": "", "features": {"label-coarse": {"num_classes": 6, "names": ["DESC", "ENTY", "ABBR", "HUM", "NUM", "LOC"], "names_file": null, "id": null, "_type": "ClassLabel"}, "label-fine": {"num_classes": 47, "names": ["manner", "cremat", "animal", "exp", "ind", "gr", "title", "def", "date", "reason", "event", "state", "desc", "count", "other", "letter", "religion", "food", "country", "color", "termeq", "city", "body", "dismed", "mount", "money", "product", "period", "substance", "sport", "plant", "techmeth", "volsize", "instru", "abb", "speed", "word", "lang", "perc", "code", "dist", "temp", "symbol", "ord", "veh", "weight", "currency"], "names_file": null, "id": null, "_type": "ClassLabel"}, "text": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "trec", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 385090, "num_examples": 5452, "dataset_name": "trec"}, "test": {"name": "test", "num_bytes": 27983, "num_examples": 500, "dataset_name": "trec"}}, "download_checksums": {"http://cogcomp.org/Data/QA/QC/train_5500.label": {"num_bytes": 335858, "checksum": "9e4c8bdcaffb96ed61041bd64b564183d52793a8e91d84fc3a8646885f466ec3"}, "http://cogcomp.org/Data/QA/QC/TREC_10.label": {"num_bytes": 23354, "checksum": "033f22c028c2bbba9ca682f68ffe204dc1aa6e1cf35dd6207f2d4ca67f0d0e8e"}}, "download_size": 359212, "dataset_size": 413073, "size_in_bytes": 772285}}
|
dummy/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cceb4211ca3ed001c69c675b3123d7ffc3ec6679e9c28a53f110024ff8d2dd85
|
3 |
+
size 861
|
trec.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" The Text REtrieval Conference (TREC) Question Classification dataset."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@inproceedings{li-roth-2002-learning,
|
24 |
+
title = "Learning Question Classifiers",
|
25 |
+
author = "Li, Xin and
|
26 |
+
Roth, Dan",
|
27 |
+
booktitle = "{COLING} 2002: The 19th International Conference on Computational Linguistics",
|
28 |
+
year = "2002",
|
29 |
+
url = "https://www.aclweb.org/anthology/C02-1150",
|
30 |
+
}
|
31 |
+
@inproceedings{hovy-etal-2001-toward,
|
32 |
+
title = "Toward Semantics-Based Answer Pinpointing",
|
33 |
+
author = "Hovy, Eduard and
|
34 |
+
Gerber, Laurie and
|
35 |
+
Hermjakob, Ulf and
|
36 |
+
Lin, Chin-Yew and
|
37 |
+
Ravichandran, Deepak",
|
38 |
+
booktitle = "Proceedings of the First International Conference on Human Language Technology Research",
|
39 |
+
year = "2001",
|
40 |
+
url = "https://www.aclweb.org/anthology/H01-1069",
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
_DESCRIPTION = """\
|
45 |
+
The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set. The dataset has 6 labels, 47 level-2 labels. Average length of each sentence is 10, vocabulary size of 8700.
|
46 |
+
|
47 |
+
Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_URLs = {
|
51 |
+
"train": "http://cogcomp.org/Data/QA/QC/train_5500.label",
|
52 |
+
"test": "http://cogcomp.org/Data/QA/QC/TREC_10.label",
|
53 |
+
}
|
54 |
+
|
55 |
+
_COARSE_LABELS = ["DESC", "ENTY", "ABBR", "HUM", "NUM", "LOC"]
|
56 |
+
|
57 |
+
_FINE_LABELS = [
|
58 |
+
"manner",
|
59 |
+
"cremat",
|
60 |
+
"animal",
|
61 |
+
"exp",
|
62 |
+
"ind",
|
63 |
+
"gr",
|
64 |
+
"title",
|
65 |
+
"def",
|
66 |
+
"date",
|
67 |
+
"reason",
|
68 |
+
"event",
|
69 |
+
"state",
|
70 |
+
"desc",
|
71 |
+
"count",
|
72 |
+
"other",
|
73 |
+
"letter",
|
74 |
+
"religion",
|
75 |
+
"food",
|
76 |
+
"country",
|
77 |
+
"color",
|
78 |
+
"termeq",
|
79 |
+
"city",
|
80 |
+
"body",
|
81 |
+
"dismed",
|
82 |
+
"mount",
|
83 |
+
"money",
|
84 |
+
"product",
|
85 |
+
"period",
|
86 |
+
"substance",
|
87 |
+
"sport",
|
88 |
+
"plant",
|
89 |
+
"techmeth",
|
90 |
+
"volsize",
|
91 |
+
"instru",
|
92 |
+
"abb",
|
93 |
+
"speed",
|
94 |
+
"word",
|
95 |
+
"lang",
|
96 |
+
"perc",
|
97 |
+
"code",
|
98 |
+
"dist",
|
99 |
+
"temp",
|
100 |
+
"symbol",
|
101 |
+
"ord",
|
102 |
+
"veh",
|
103 |
+
"weight",
|
104 |
+
"currency",
|
105 |
+
]
|
106 |
+
|
107 |
+
|
108 |
+
class Trec(datasets.GeneratorBasedBuilder):
|
109 |
+
"""TODO: Short description of my dataset."""
|
110 |
+
|
111 |
+
VERSION = datasets.Version("1.1.0")
|
112 |
+
|
113 |
+
def _info(self):
|
114 |
+
# TODO: Specifies the datasets.DatasetInfo object
|
115 |
+
return datasets.DatasetInfo(
|
116 |
+
# This is the description that will appear on the datasets page.
|
117 |
+
description=_DESCRIPTION,
|
118 |
+
# datasets.features.FeatureConnectors
|
119 |
+
features=datasets.Features(
|
120 |
+
{
|
121 |
+
"label-coarse": datasets.ClassLabel(names=_COARSE_LABELS),
|
122 |
+
"label-fine": datasets.ClassLabel(names=_FINE_LABELS),
|
123 |
+
"text": datasets.Value("string"),
|
124 |
+
}
|
125 |
+
),
|
126 |
+
# If there's a common (input, target) tuple from the features,
|
127 |
+
# specify them here. They'll be used if as_supervised=True in
|
128 |
+
# builder.as_dataset.
|
129 |
+
supervised_keys=None,
|
130 |
+
# Homepage of the dataset for documentation
|
131 |
+
homepage="https://cogcomp.seas.upenn.edu/Data/QA/QC/",
|
132 |
+
citation=_CITATION,
|
133 |
+
)
|
134 |
+
|
135 |
+
def _split_generators(self, dl_manager):
|
136 |
+
"""Returns SplitGenerators."""
|
137 |
+
# TODO: Downloads the data and defines the splits
|
138 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
139 |
+
# download and extract URLs
|
140 |
+
dl_files = dl_manager.download_and_extract(_URLs)
|
141 |
+
return [
|
142 |
+
datasets.SplitGenerator(
|
143 |
+
name=datasets.Split.TRAIN,
|
144 |
+
# These kwargs will be passed to _generate_examples
|
145 |
+
gen_kwargs={
|
146 |
+
"filepath": dl_files["train"],
|
147 |
+
},
|
148 |
+
),
|
149 |
+
datasets.SplitGenerator(
|
150 |
+
name=datasets.Split.TEST,
|
151 |
+
# These kwargs will be passed to _generate_examples
|
152 |
+
gen_kwargs={
|
153 |
+
"filepath": dl_files["test"],
|
154 |
+
},
|
155 |
+
),
|
156 |
+
]
|
157 |
+
|
158 |
+
def _generate_examples(self, filepath):
|
159 |
+
""" Yields examples. """
|
160 |
+
# TODO: Yields (key, example) tuples from the dataset
|
161 |
+
with open(filepath, "rb") as f:
|
162 |
+
for id_, row in enumerate(f):
|
163 |
+
# One non-ASCII byte: sisterBADBYTEcity. We replace it with a space
|
164 |
+
label, _, text = row.replace(b"\xf0", b" ").strip().decode().partition(" ")
|
165 |
+
coarse_label, _, fine_label = label.partition(":")
|
166 |
+
yield id_, {
|
167 |
+
"label-coarse": coarse_label,
|
168 |
+
"label-fine": fine_label,
|
169 |
+
"text": text,
|
170 |
+
}
|