|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TIAGE: A Benchmark for Topic-Shift Aware Dialog Modeling""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://github.com/HuiyuanXie/tiage" |
|
|
|
_LICENSE = """\ |
|
""" |
|
|
|
|
|
|
|
_URLs = { |
|
"train": "https://huggingface.co/datasets/Coldog2333/tiage/resolve/main/train.json", |
|
"validation": "https://huggingface.co/datasets/Coldog2333/tiage/resolve/main/validation.json", |
|
"test": "https://huggingface.co/datasets/Coldog2333/tiage/resolve/main/test.json", |
|
} |
|
|
|
|
|
class TIAGEConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TIAGE""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.dataset_name = "tiage" |
|
|
|
|
|
class TIAGE(datasets.GeneratorBasedBuilder): |
|
"""TIAGE: A Benchmark for Topic-Shift Aware Dialog Modeling""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"dial_id": datasets.Value("string"), |
|
"utterance": datasets.features.Sequence(datasets.Value("string")), |
|
"segmentation_label": datasets.features.Sequence(datasets.Value("int32")), |
|
"da": datasets.features.Sequence(datasets.Value("string")), |
|
"role": datasets.features.Sequence(datasets.Value("string")), |
|
"turn_id": datasets.features.Sequence(datasets.Value("int32")), |
|
"topic_id": datasets.features.Sequence(datasets.Value("int32")) |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_files = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f)["dial_data"][self.dataset_name] |
|
for id_, row in enumerate(data): |
|
yield id_, { |
|
"dial_id": row["dial_id"], |
|
"utterance": [turn["utterance"] for turn in row["turns"]], |
|
"segmentation_label": [turn["segmentation_label"] for turn in row["turns"]], |
|
"da": [turn["da"] for turn in row["turns"]], |
|
"role": [turn["role"] for turn in row["turns"]], |
|
"turn_id": [turn["turn_id"] for turn in row["turns"]], |
|
"topic_id": [turn["topic_id"] for turn in row["turns"]] |
|
} |
|
|