zhuqi commited on
Commit
bdc90b2
1 Parent(s): 6e9a657

Upload preprocess.py

Browse files
Files changed (1) hide show
  1. preprocess.py +210 -0
preprocess.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from turtle import st
2
+ from zipfile import ZipFile, ZIP_DEFLATED
3
+ from shutil import rmtree
4
+ import json
5
+ import os
6
+ from tqdm import tqdm
7
+ from collections import Counter
8
+ from pprint import pprint
9
+ import re
10
+ import requests
11
+ from dateutil import parser as date_parser
12
+ from string import punctuation
13
+ from copy import deepcopy
14
+
15
+
16
+ def value_in_utt(value, utt):
17
+ """return character level (start, end) if value in utt"""
18
+ value = value.strip(punctuation).lower()
19
+ utt = utt
20
+ p = '(^|[\s,\.:\?!-])(?P<v>{})([\s,\.:\?!-\']|$)'.format(re.escape(value))
21
+ p = re.compile(p, re.I)
22
+ m = re.search(p, utt)
23
+ if m:
24
+ # very few value appears more than once, take the first span
25
+ return True, m.span('v')
26
+ else:
27
+ try:
28
+ # solve date representation, e.g. '3 pm' vs '3pm'
29
+ date_parser.parse(value)
30
+ if (value.endswith('pm') or value.endswith('am')) and ''.join(value.split(' ')) in ''.join(utt.split(' ')):
31
+ return True, None
32
+
33
+ except:
34
+ if value in utt:
35
+ # value appears, but may be in the plural, -ing, -ly, etc.
36
+ return True, None
37
+
38
+ return False, None
39
+
40
+
41
+ def preprocess():
42
+ data_file = "kvret_dataset_public.zip"
43
+ if not os.path.exists(data_file):
44
+ response = requests.get("http://nlp.stanford.edu/projects/kvret/kvret_dataset_public.zip")
45
+ open(data_file, "wb").write(response.content)
46
+
47
+ archive = ZipFile(data_file)
48
+
49
+ new_data_dir = 'data'
50
+
51
+ os.makedirs(new_data_dir, exist_ok=True)
52
+
53
+ dataset = 'kvret'
54
+ splits = ['train', 'validation', 'test']
55
+ dialogues_by_split = {split:[] for split in splits}
56
+
57
+ ontology = {'domains': {},
58
+ 'intents': {
59
+ 'inform': {'description': ''},
60
+ 'request': {'description': ''}
61
+ },
62
+ 'state': {},
63
+ 'dialogue_acts': {
64
+ "categorical": {},
65
+ "non-categorical": {},
66
+ "binary": {}
67
+ }}
68
+
69
+ domain2slot = {
70
+ 'schedule': ['event', 'time', 'date', 'party', 'room', 'agenda'],
71
+ 'weather': ['location', 'weekly_time', 'temperature', 'weather_attribute'],
72
+ 'navigate': ['poi', 'traffic_info', 'poi_type', 'address', 'distance']
73
+ }
74
+ slot2domain = {slot: domain for domain in domain2slot for slot in domain2slot[domain]}
75
+
76
+ db = []
77
+ with archive.open(f'kvret_entities.json') as f:
78
+ entities = json.load(f)
79
+ for slot, values in entities.items():
80
+ domain = slot2domain[slot]
81
+ ontology['domains'].setdefault(domain, {'description': '', 'slots': {}})
82
+ if slot == 'poi':
83
+ for s in ['poi', 'address', 'poi_type']:
84
+ ontology['domains'][domain]['slots'][s] = {'description': '', 'is_categorical': False, 'possible_values': []}
85
+ for item in values:
86
+ poi, address, poi_type = item['poi'], item['address'], item['type']
87
+ db.append({'poi': poi, 'address': address, 'poi_type': poi_type})
88
+ for s in ['poi', 'address', 'poi_type']:
89
+ ontology['domains'][domain]['slots'][s]['possible_values'].append(db[-1][s])
90
+ continue
91
+ elif slot == 'weekly_time':
92
+ slot = 'date'
93
+ elif slot == 'temperature':
94
+ values = [f"{x}F" for x in values]
95
+ elif slot == 'distance':
96
+ values = [f"{x} miles" for x in values]
97
+
98
+ ontology['domains'][domain]['slots'][slot] = {'description': '', 'is_categorical': False, 'possible_values': values}
99
+
100
+ for domain in ontology['domains']:
101
+ for slot in ontology['domains'][domain]['slots']:
102
+ ontology['domains'][domain]['slots'][slot]['possible_values'] = sorted(list(set(ontology['domains'][domain]['slots'][slot]['possible_values'])))
103
+
104
+ for data_split in splits:
105
+ filename = data_split if data_split != 'validation' else 'dev'
106
+ with archive.open(f'kvret_{filename}_public.json') as f:
107
+ data = json.load(f)
108
+ for item in tqdm(data):
109
+ if len(item['dialogue']) == 0:
110
+ continue
111
+ scenario = item['scenario']
112
+ domain = scenario['task']['intent']
113
+
114
+ slots = scenario['kb']['column_names']
115
+ db_results = {domain: []}
116
+ if scenario['kb']['items']:
117
+ for entry in scenario['kb']['items']:
118
+ db_results[domain].append({s: entry[s] for s in slots})
119
+
120
+ dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
121
+ dialogue = {
122
+ 'dataset': dataset,
123
+ 'data_split': data_split,
124
+ 'dialogue_id': dialogue_id,
125
+ 'original_id': f'{data_split}-{len(dialogues_by_split[data_split])}',
126
+ 'domains': [domain],
127
+ 'turns': []
128
+ }
129
+ init_state = {domain: {}}
130
+
131
+ for turn in item['dialogue']:
132
+ speaker = 'user' if turn['turn'] == 'driver' else 'system'
133
+ utt = turn['data']['utterance'].strip()
134
+ if len(dialogue['turns']) > 0 and speaker == dialogue['turns'][-1]['speaker']:
135
+ # repeat, skip
136
+ if utt == dialogue['turns'][-1]['utterance']:
137
+ continue
138
+ else:
139
+ dialogue['turns'].pop(-1)
140
+
141
+ dialogue['turns'].append({
142
+ 'speaker': speaker,
143
+ 'utterance': utt,
144
+ 'utt_idx': len(dialogue['turns']),
145
+ 'dialogue_acts': {
146
+ 'binary': [],
147
+ 'categorical': [],
148
+ 'non-categorical': [],
149
+ },
150
+ })
151
+
152
+ if speaker == 'user':
153
+ dialogue['turns'][-1]['state'] = deepcopy(init_state)
154
+ else:
155
+ user_da = {'binary': [], 'categorical': [], 'non-categorical': []}
156
+ user_utt = dialogue['turns'][-2]['utterance']
157
+
158
+ for slot, value in turn['data']['slots'].items():
159
+ value = value.strip()
160
+ is_appear, span = value_in_utt(value, user_utt)
161
+ if is_appear:
162
+ if span:
163
+ start, end = span
164
+ user_da['non-categorical'].append({
165
+ 'intent': 'inform', 'domain': domain, 'slot': slot, 'value': user_utt[start:end],
166
+ 'start': start, 'end': end
167
+ })
168
+ else:
169
+ user_da['non-categorical'].append({
170
+ 'intent': 'inform', 'domain': domain, 'slot': slot, 'value': value,
171
+ })
172
+ init_state[domain][slot] = value
173
+ ontology['state'].setdefault(domain, {})
174
+ ontology['state'][domain].setdefault(slot, '')
175
+ dialogue['turns'][-2]['state'] = deepcopy(init_state)
176
+
177
+ for slot, present in turn['data']['requested'].items():
178
+ if slot not in turn['data']['slots'] and present:
179
+ user_da['binary'].append({'intent': 'request', 'domain': domain, 'slot': slot})
180
+
181
+ dialogue['turns'][-2]['dialogue_acts'] = user_da
182
+ dialogue['turns'][-1]['db_results'] = db_results
183
+
184
+ for da_type in user_da:
185
+ das = user_da[da_type]
186
+ for da in das:
187
+ ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
188
+ ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])]['user'] = True
189
+
190
+ assert all([s in ontology['domains'][domain]['slots'] for s in turn['data']['requested']]), print(turn['data']['requested'], ontology['domains'][domain]['slots'].keys())
191
+ assert all([s in ontology['domains'][domain]['slots'] for s in turn['data']['slots']]), print(turn['data']['slots'], ontology['domains'][domain]['slots'].keys())
192
+
193
+ dialogues_by_split[data_split].append(dialogue)
194
+
195
+ for da_type in ontology['dialogue_acts']:
196
+ ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
197
+ dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
198
+ json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
199
+ json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
200
+ json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
201
+ json.dump(db, open(f'{new_data_dir}/db.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
202
+ with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
203
+ for filename in os.listdir(new_data_dir):
204
+ zf.write(f'{new_data_dir}/{filename}')
205
+ rmtree(new_data_dir)
206
+ return dialogues, ontology
207
+
208
+
209
+ if __name__ == '__main__':
210
+ preprocess()