|
import copy |
|
import json |
|
import os |
|
from zipfile import ZipFile, ZIP_DEFLATED |
|
from shutil import rmtree |
|
|
|
ontology = { |
|
'domains': { |
|
'restaurant': { |
|
'description': 'search for a restaurant to dine', |
|
'slots': { |
|
'food': { |
|
'description': 'food type of the restaurant', |
|
'is_categorical': False, |
|
'possible_values': [] |
|
}, |
|
'area': { |
|
'description': 'area of the restaurant', |
|
'is_categorical': True, |
|
'possible_values': ["east", "west", "centre", "north", "south"] |
|
}, |
|
'postcode': { |
|
'description': 'postal code of the restaurant', |
|
'is_categorical': False, |
|
'possible_values': [] |
|
}, |
|
'phone': { |
|
'description': 'phone number of the restaurant', |
|
'is_categorical': False, |
|
'possible_values': [] |
|
}, |
|
'address': { |
|
'description': 'address of the restaurant', |
|
'is_categorical': False, |
|
'possible_values': [] |
|
}, |
|
'price range': { |
|
'description': 'price range of the restaurant', |
|
'is_categorical': True, |
|
'possible_values': ["expensive", "moderate", "cheap"] |
|
}, |
|
'name': { |
|
'description': 'name of the restaurant', |
|
'is_categorical': False, |
|
'possible_values': [] |
|
} |
|
} |
|
} |
|
}, |
|
'intents': { |
|
'inform': { |
|
'description': 'system informs user the value of a slot' |
|
}, |
|
'request': { |
|
'description': 'system asks the user to provide value of a slot' |
|
} |
|
}, |
|
'state': { |
|
'restaurant': { |
|
'food': '', |
|
'area': '', |
|
'postcode': '', |
|
'phone': '', |
|
'address': '', |
|
'price range': '', |
|
'name': '' |
|
} |
|
}, |
|
"dialogue_acts": { |
|
"categorical": {}, |
|
"non-categorical": {}, |
|
"binary": {} |
|
} |
|
} |
|
|
|
|
|
def convert_da(da, utt): |
|
global ontology |
|
|
|
converted = { |
|
'binary': [], |
|
'categorical': [], |
|
'non-categorical': [] |
|
} |
|
|
|
for s, v in da: |
|
if s == 'request': |
|
converted['binary'].append({ |
|
'intent': 'request', |
|
'domain': 'restaurant', |
|
'slot': v, |
|
}) |
|
|
|
else: |
|
slot_type = 'categorical' if ontology['domains']['restaurant']['slots'][s]['is_categorical'] else 'non-categorical' |
|
|
|
v = v.strip() |
|
if v != 'dontcare' and ontology['domains']['restaurant']['slots'][s]['is_categorical']: |
|
if v == 'center': |
|
v = 'centre' |
|
elif v == 'east side': |
|
v = 'east' |
|
assert v in ontology['domains']['restaurant']['slots'][s]['possible_values'], print([s,v, utt]) |
|
|
|
converted[slot_type].append({ |
|
'intent': 'inform', |
|
'domain': 'restaurant', |
|
'slot': s, |
|
'value': v |
|
}) |
|
|
|
if slot_type == 'non-categorical' and v != 'dontcare': |
|
|
|
start = utt.lower().find(v) |
|
|
|
if start != -1: |
|
end = start + len(v) |
|
converted[slot_type][-1]['start'] = start |
|
converted[slot_type][-1]['end'] = end |
|
converted[slot_type][-1]['value'] = utt[start:end] |
|
|
|
return converted |
|
|
|
|
|
def preprocess(): |
|
original_data_dir = 'woz' |
|
new_data_dir = 'data' |
|
os.makedirs(new_data_dir, exist_ok=True) |
|
|
|
dataset = 'woz' |
|
splits = ['train', 'validation', 'test'] |
|
domain = 'restaurant' |
|
dialogues_by_split = {split: [] for split in splits} |
|
global ontology |
|
|
|
for split in splits: |
|
if split != 'validation': |
|
filename = os.path.join(original_data_dir, f'woz_{split}_en.json') |
|
else: |
|
filename = os.path.join(original_data_dir, 'woz_validate_en.json') |
|
if not os.path.exists(filename): |
|
raise FileNotFoundError( |
|
f'cannot find {filename}, should manually download from https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz') |
|
|
|
data = json.load(open(filename)) |
|
|
|
for item in data: |
|
dialogue = { |
|
'dataset': dataset, |
|
'data_split': split, |
|
'dialogue_id': f'{dataset}-{split}-{len(dialogues_by_split[split])}', |
|
'original_id': item['dialogue_idx'], |
|
'domains': [domain], |
|
'turns': [] |
|
} |
|
|
|
turns = item['dialogue'] |
|
n_turn = len(turns) |
|
|
|
for i in range(n_turn): |
|
sys_utt = turns[i]['system_transcript'].strip() |
|
usr_utt = turns[i]['transcript'].strip() |
|
usr_da = turns[i]['turn_label'] |
|
|
|
for s, v in usr_da: |
|
if s == 'request': |
|
assert v in ontology['domains']['restaurant']['slots'] |
|
else: |
|
assert s in ontology['domains']['restaurant']['slots'] |
|
|
|
if i != 0: |
|
dialogue['turns'].append({ |
|
'utt_idx': len(dialogue['turns']), |
|
'speaker': 'system', |
|
'utterance': sys_utt, |
|
}) |
|
|
|
cur_state = copy.deepcopy(ontology['state']) |
|
for act_slots in turns[i]['belief_state']: |
|
act, slots = act_slots['act'], act_slots['slots'] |
|
if act == 'inform': |
|
for s, v in slots: |
|
v = v.strip() |
|
if v != 'dontcare' and ontology['domains']['restaurant']['slots'][s]['is_categorical']: |
|
if v not in ontology['domains']['restaurant']['slots'][s]['possible_values']: |
|
if v == 'center': |
|
v = 'centre' |
|
elif v == 'east side': |
|
v = 'east' |
|
assert v in ontology['domains']['restaurant']['slots'][s]['possible_values'] |
|
|
|
cur_state[domain][s] = v |
|
|
|
cur_usr_da = convert_da(usr_da, usr_utt) |
|
|
|
|
|
for da_type in cur_usr_da: |
|
das = cur_usr_da[da_type] |
|
for da in das: |
|
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {}) |
|
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])]['user'] = True |
|
|
|
dialogue['turns'].append({ |
|
'utt_idx': len(dialogue['turns']), |
|
'speaker': 'user', |
|
'utterance': usr_utt, |
|
'state': cur_state, |
|
'dialogue_acts': cur_usr_da, |
|
}) |
|
|
|
dialogues_by_split[split].append(dialogue) |
|
|
|
dialogues = [] |
|
for split in splits: |
|
dialogues += dialogues_by_split[split] |
|
for da_type in ontology['dialogue_acts']: |
|
ontology["dialogue_acts"][da_type] = sorted([str( |
|
{'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent': da[0], |
|
'domain': da[1], 'slot': da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()]) |
|
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False) |
|
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf: |
|
for filename in os.listdir(new_data_dir): |
|
zf.write(f'{new_data_dir}/{filename}') |
|
rmtree(original_data_dir) |
|
rmtree(new_data_dir) |
|
return dialogues, ontology |
|
|
|
|
|
if __name__ == '__main__': |
|
preprocess() |
|
|