# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The amazon polarity dataset for text classification.""" import csv import datasets _CITATION = """\ @inproceedings{mcauley2013hidden, title={Hidden factors and hidden topics: understanding rating dimensions with review text}, author={McAuley, Julian and Leskovec, Jure}, booktitle={Proceedings of the 7th ACM conference on Recommender systems}, pages={165--172}, year={2013} } """ _DESCRIPTION = """\ The Amazon reviews dataset consists of reviews from amazon. The data span a period of 18 years, including ~35 million reviews up to March 2013. Reviews include product and user information, ratings, and a plaintext review. """ _HOMEPAGE = "https://registry.opendata.aws/" _LICENSE = "Apache License 2.0" _URLs = { "amazon_polarity": "https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download", } class AmazonPolarityConfig(datasets.BuilderConfig): """BuilderConfig for AmazonPolarity.""" def __init__(self, **kwargs): """BuilderConfig for AmazonPolarity. Args: **kwargs: keyword arguments forwarded to super. """ super(AmazonPolarityConfig, self).__init__(**kwargs) class AmazonPolarity(datasets.GeneratorBasedBuilder): """Amazon Polarity Classification Dataset.""" VERSION = datasets.Version("3.0.0") BUILDER_CONFIGS = [ AmazonPolarityConfig( name="amazon_polarity", version=VERSION, description="Amazon Polarity Classification Dataset." ), ] def _info(self): features = datasets.Features( { "label": datasets.features.ClassLabel( names=[ "negative", "positive", ] ), "title": datasets.Value("string"), "content": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" my_urls = _URLs[self.config.name] archive = dl_manager.download(my_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": "/".join(["amazon_review_polarity_csv", "train.csv"]), "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": "/".join(["amazon_review_polarity_csv", "test.csv"]), "files": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, filepath, files): """Yields examples.""" for path, f in files: if path == filepath: lines = (line.decode("utf-8") for line in f) data = csv.reader(lines, delimiter=",", quoting=csv.QUOTE_ALL) for id_, row in enumerate(data): yield id_, { "title": row[1], "content": row[2], "label": int(row[0]) - 1, } break