parquet-converter commited on
Commit
05c1704
1 Parent(s): 1f6208e

Update parquet files

Browse files
SemEval2018_Task7.py DELETED
@@ -1,308 +0,0 @@
1
- # I am trying to understand to the following code. Do not use this for any purpose as I do not support this.
2
- # Use the original source from https://huggingface.co/datasets/DFKI-SLT/science_ie/raw/main/science_ie.py
3
-
4
-
5
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
6
- #
7
- # Licensed under the Apache License, Version 2.0 (the "License");
8
- # you may not use this file except in compliance with the License.
9
- # You may obtain a copy of the License at
10
- #
11
- # http://www.apache.org/licenses/LICENSE-2.0
12
- #
13
- # Unless required by applicable law or agreed to in writing, software
14
- # distributed under the License is distributed on an "AS IS" BASIS,
15
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
- # See the License for the specific language governing permissions and
17
- # limitations under the License.
18
- """Semeval2018Task7 is a dataset that describes the first task on semantic relation extraction and classification in scientific paper abstracts"""
19
-
20
-
21
-
22
- import glob
23
- import datasets
24
- import xml.dom.minidom
25
- import xml.etree.ElementTree as ET
26
-
27
- # Find for instance the citation on arxiv or on the dataset repo/website
28
- _CITATION = """\
29
- @inproceedings{gabor-etal-2018-semeval,
30
- title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
31
- author = {G{\'a}bor, Kata and
32
- Buscaldi, Davide and
33
- Schumann, Anne-Kathrin and
34
- QasemiZadeh, Behrang and
35
- Zargayouna, Ha{\"\i}fa and
36
- Charnois, Thierry},
37
- booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
38
- month = jun,
39
- year = "2018",
40
- address = "New Orleans, Louisiana",
41
- publisher = "Association for Computational Linguistics",
42
- url = "https://aclanthology.org/S18-1111",
43
- doi = "10.18653/v1/S18-1111",
44
- pages = "679--688",
45
- abstract = "This paper describes the first task on semantic relation extraction and classification in
46
- scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations
47
- and includes three different subtasks. The subtasks were designed so as to compare and quantify the
48
- effect of different pre-processing steps on the relation classification results. We expect the task to
49
- be relevant for a broad range of researchers working on extracting specialized knowledge from domain
50
- corpora, for example but not limited to scientific or bio-medical information extraction. The task
51
- attracted a total of 32 participants, with 158 submissions across different scenarios.",
52
- }
53
- """
54
-
55
- # You can copy an official description
56
- _DESCRIPTION = """\
57
- This paper describes the first task on semantic relation extraction and classification in scientific paper
58
- abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three
59
- different subtasks. The subtasks were designed so as to compare and quantify the effect of different
60
- pre-processing steps on the relation classification results. We expect the task to be relevant for a broad
61
- range of researchers working on extracting specialized knowledge from domain corpora, for example but not
62
- limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants,
63
- with 158 submissions across different scenarios.
64
- """
65
-
66
- # Add a link to an official homepage for the dataset here
67
- _HOMEPAGE = "https://github.com/gkata/SemEval2018Task7/tree/testing"
68
-
69
- # Add the licence for the dataset here if you can find it
70
- _LICENSE = ""
71
-
72
- # Add link to the official dataset URLs here
73
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
74
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
75
- _URLS = {
76
- "Subtask_1_1": {
77
- "train": {
78
- "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.relations.txt",
79
- "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.text.xml",
80
- },
81
- "test": {
82
- "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.relations.txt",
83
- "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.text.xml",
84
- },
85
- },
86
- "Subtask_1_2": {
87
- "train": {
88
- "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.relations.txt",
89
- "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.text.xml",
90
- },
91
- "test": {
92
- "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.relations.txt",
93
- "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.text.xml",
94
- },
95
- },
96
-
97
- }
98
-
99
-
100
- def all_text_nodes(root):
101
- if root.text is not None:
102
- yield root.text
103
- for child in root:
104
- if child.tail is not None:
105
- yield child.tail
106
-
107
-
108
- def reading_entity_data(ET_data_to_convert):
109
- parsed_data = ET.tostring(ET_data_to_convert,"utf-8")
110
- parsed_data= parsed_data.decode('utf8').replace("b\'","")
111
- parsed_data= parsed_data.replace("<abstract>","")
112
- parsed_data= parsed_data.replace("</abstract>","")
113
- parsed_data= parsed_data.replace("<title>","")
114
- parsed_data= parsed_data.replace("</title>","")
115
- parsed_data = parsed_data.replace("\n\n\n","")
116
-
117
- parsing_tag = False
118
- final_string = ""
119
- tag_string= ""
120
- current_tag_id = ""
121
- current_tag_starting_pos = 0
122
- current_tag_ending_pos= 0
123
- entity_mapping_list=[]
124
-
125
- for i in parsed_data:
126
- if i=='<':
127
- parsing_tag = True
128
- if current_tag_id!="":
129
- current_tag_ending_pos = len(final_string)-1
130
- entity_mapping_list.append({"id":current_tag_id,
131
- "char_start":current_tag_starting_pos,
132
- "char_end":current_tag_ending_pos+1})
133
- current_tag_id= ""
134
- tag_string=""
135
-
136
-
137
- elif i=='>':
138
- parsing_tag = False
139
- tag_string_split = tag_string.split('"')
140
- if len(tag_string_split)>1:
141
- current_tag_id= tag_string.split('"')[1]
142
- current_tag_starting_pos = len(final_string)
143
-
144
- else:
145
- if parsing_tag!=True:
146
- final_string = final_string + i
147
- else:
148
- tag_string = tag_string + i
149
-
150
- return {"text_data":final_string, "entities":entity_mapping_list}
151
-
152
-
153
-
154
- class Semeval2018Task7(datasets.GeneratorBasedBuilder):
155
- """
156
- Semeval2018Task7 is a dataset for semantic relation extraction and classification in scientific paper abstracts
157
- """
158
-
159
- VERSION = datasets.Version("1.1.0")
160
-
161
- BUILDER_CONFIGS = [
162
- datasets.BuilderConfig(name="Subtask_1_1", version=VERSION,
163
- description="Relation classification on clean data"),
164
- datasets.BuilderConfig(name="Subtask_1_2", version=VERSION,
165
- description="Relation classification on noisy data"),
166
-
167
- ]
168
- DEFAULT_CONFIG_NAME = "Subtask_1_1"
169
-
170
- def _info(self):
171
- class_labels = ["","USAGE", "RESULT", "MODEL-FEATURE", "PART_WHOLE", "TOPIC", "COMPARE"]
172
- features = datasets.Features(
173
- {
174
- "id": datasets.Value("string"),
175
- "title": datasets.Value("string"),
176
- "abstract": datasets.Value("string"),
177
- "entities": [
178
- {
179
- "id": datasets.Value("string"),
180
- "char_start": datasets.Value("int32"),
181
- "char_end": datasets.Value("int32")
182
- }
183
- ],
184
- "relation": [
185
- {
186
- "label": datasets.ClassLabel(names=class_labels),
187
- "arg1": datasets.Value("string"),
188
- "arg2": datasets.Value("string"),
189
- "reverse": datasets.Value("bool")
190
- }
191
- ]
192
- }
193
- )
194
-
195
- return datasets.DatasetInfo(
196
- # This is the description that will appear on the datasets page.
197
- description=_DESCRIPTION,
198
- # This defines the different columns of the dataset and their types
199
- features=features, # Here we define them above because they are different between the two configurations
200
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
201
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
202
- # supervised_keys=("sentence", "label"),
203
- # Homepage of the dataset for documentation
204
- homepage=_HOMEPAGE,
205
- # License for the dataset if available
206
- license=_LICENSE,
207
- # Citation for the dataset
208
- citation=_CITATION,
209
- )
210
-
211
- def _split_generators(self, dl_manager):
212
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
213
-
214
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
215
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
216
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
217
- urls = _URLS[self.config.name]
218
- downloaded_files = dl_manager.download(urls)
219
- print(downloaded_files)
220
-
221
- return [
222
- datasets.SplitGenerator(
223
- name=datasets.Split.TRAIN,
224
- # These kwargs will be passed to _generate_examples
225
- gen_kwargs={
226
- "relation_filepath": downloaded_files['train']["relations"],
227
- "text_filepath": downloaded_files['train']["text"],
228
-
229
- }
230
-
231
- ),
232
- datasets.SplitGenerator(
233
- name=datasets.Split.TEST,
234
- # These kwargs will be passed to _generate_examples
235
- gen_kwargs={
236
- "relation_filepath": downloaded_files['test']["relations"],
237
- "text_filepath": downloaded_files['test']["text"],
238
-
239
- }
240
-
241
- )]
242
-
243
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
244
- def _generate_examples(self, relation_filepath, text_filepath):
245
-
246
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
247
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
248
- with open(relation_filepath, encoding="utf-8") as f:
249
- relations = []
250
- text_id_to_relations_map= {}
251
- for key, row in enumerate(f):
252
- row_split = row.strip("\n").split("(")
253
- use_case = row_split[0]
254
- second_half = row_split[1].strip(")")
255
- second_half_splits = second_half.split(",")
256
- size = len(second_half_splits)
257
-
258
- relation = {
259
- "label": use_case,
260
- "arg1": second_half_splits[0],
261
- "arg2": second_half_splits[1],
262
- "reverse": True if size == 3 else False
263
- }
264
- relations.append(relation)
265
-
266
- arg_id = second_half_splits[0].split(".")[0]
267
- if arg_id not in text_id_to_relations_map:
268
- text_id_to_relations_map[arg_id] = [relation]
269
- else:
270
- text_id_to_relations_map[arg_id].append(relation)
271
- #print("result", text_id_to_relations_map)
272
-
273
- #for arg_id, values in text_id_to_relations_map.items():
274
- #print(f"ID: {arg_id}")
275
- # for value in values:
276
- # (value)
277
-
278
-
279
-
280
- doc2 = ET.parse(text_filepath)
281
- root = doc2.getroot()
282
-
283
- for child in root:
284
- if child.find("title")==None:
285
- continue
286
- text_id = child.attrib
287
- #print("text_id", text_id)
288
-
289
- if child.find("abstract")==None:
290
- continue
291
- title = child.find("title").text
292
- child_abstract = child.find("abstract")
293
-
294
-
295
- abstract_text_and_entities = reading_entity_data(child.find("abstract"))
296
- title_text_and_entities = reading_entity_data(child.find("title"))
297
-
298
- text_relations = []
299
- if text_id['id'] in text_id_to_relations_map:
300
- text_relations = text_id_to_relations_map[text_id['id']]
301
-
302
- yield text_id['id'], {
303
- "id": text_id['id'],
304
- "title": title_text_and_entities['text_data'],
305
- "abstract": abstract_text_and_entities['text_data'],
306
- "entities": abstract_text_and_entities['entities'] + title_text_and_entities['entities'],
307
- "relation": text_relations
308
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Subtask_1_1/sem_eval2018_task7-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d132af27e1ee05a2784d8e9faddc4424b7fc99643b05088fae6bf378ae602406
3
+ size 115623
Subtask_1_1/sem_eval2018_task7-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3a5d12513d228abbae4b7a3b7de02ebe27d3e07f652639bf5a43bc89ee33b7f
3
+ size 235436
Subtask_1_2/sem_eval2018_task7-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8580cfccb9573ad63bee29ec5d2e113b29f201fc69d06c345269cabdb7048f54
3
+ size 137252
Subtask_1_2/sem_eval2018_task7-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5a5586a43e725891f28f5b0488343e28f6858044cf069ba03df8ceeea944bf2
3
+ size 305577