Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Size:
100K<n<1M
ArXiv:
Tags:
relation extraction
License:
File size: 17,554 Bytes
df547fe bc7bd5e df547fe 4ba9a70 df547fe 4ba9a70 df547fe bc7bd5e df547fe bc7bd5e df547fe bc7bd5e 4ba9a70 df547fe 93d2452 df547fe a53e7be df547fe 93d2452 df547fe a53e7be df547fe d58a8a5 df547fe d58a8a5 df547fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# coding=utf-8
# Copyright 2022 The current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The MultiTACRED Relation Classification dataset in various languages"""
import itertools
import json
import os
import datasets
_CITATION = """\
@inproceedings{hennig-etal-2023-multitacred,
title = "MultiTACRED: A Multilingual Version of the TAC Relation Extraction Dataset",
author = "Hennig, Leonhard and Thomas, Philippe and Möller, Sebastian",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Online and Toronto, Canada",
publisher = "Association for Computational Linguistics",
}
@inproceedings{zhang-etal-2017-position,
title = "Position-aware Attention and Supervised Data Improve Slot Filling",
author = "Zhang, Yuhao and
Zhong, Victor and
Chen, Danqi and
Angeli, Gabor and
Manning, Christopher D.",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D17-1004",
doi = "10.18653/v1/D17-1004",
pages = "35--45",
}
@inproceedings{alt-etal-2020-tacred,
title = "{TACRED} Revisited: A Thorough Evaluation of the {TACRED} Relation Extraction Task",
author = "Alt, Christoph and
Gabryszak, Aleksandra and
Hennig, Leonhard",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.142",
doi = "10.18653/v1/2020.acl-main.142",
pages = "1558--1569",
}
@inproceedings{DBLP:conf/aaai/StoicaPP21,
author = {George Stoica and
Emmanouil Antonios Platanios and
Barnab{\'{a}}s P{\'{o}}czos},
title = {Re-TACRED: Addressing Shortcomings of the {TACRED} Dataset},
booktitle = {Thirty-Fifth {AAAI} Conference on Artificial Intelligence, {AAAI}
2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, {IAAI} 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, {EAAI} 2021, Virtual Event, February 2-9,
2021},
pages = {13843--13850},
publisher = {{AAAI} Press},
year = {2021},
url = {https://ojs.aaai.org/index.php/AAAI/article/view/17631},
}
"""
_DESCRIPTION = """\
MultiTACRED is a multilingual version of the large-scale TAC Relation Extraction Dataset
(https://nlp.stanford.edu/projects/tacred). It covers 12 typologically diverse languages from 9 language families,
and was created by the Speech & Language Technology group of DFKI (https://www.dfki.de/slt) by machine-translating the
instances of the original TACRED dataset and automatically projecting their entity annotations. For details of the
original TACRED's data collection and annotation process, see the Stanford paper (https://aclanthology.org/D17-1004/).
Translations are syntactically validated by checking the correctness of the XML tag markup. Any translations with an
invalid tag structure, e.g. missing or invalid head or tail tag pairs, are discarded (on average, 2.3% of the
instances).
Languages covered are: Arabic, Chinese, Finnish, French, German, Hindi, Hungarian, Japanese, Polish,
Russian, Spanish, Turkish. Intended use is supervised relation classification. Audience - researchers.
Please see our ACL paper (https://arxiv.org/abs/2305.04582) for full details.
NOTE: This Datasetreader supports a reduced version of the original TACRED JSON format with the following changes:
- Removed fields: stanford_pos, stanford_ner, stanford_head, stanford_deprel, docid
The motivation for this is that we want to support additional languages, for which these fields were not required
or available. The reader expects the specification of a language-specific configuration specifying the variant
(original, revisited or retacred) and the language (as a two-letter iso code).
The DatasetReader changes the offsets of the following fields, to conform with standard Python usage (see
_generate_examples()):
- subj_end to subj_end + 1 (make end offset exclusive)
- obj_end to obj_end + 1 (make end offset exclusive)
NOTE 2: The MultiTACRED dataset offers an additional 'split', namely the backtranslated test data (translated to a
target language and then back to English). To access this split, use dataset['backtranslated_test'].
You can find the TACRED dataset reader for the English version of the dataset at
https://huggingface.co/datasets/DFKI-SLT/tacred.
"""
_HOMEPAGE = "https://github.com/DFKI-NLP/MultiTACRED"
_LICENSE = "LDC"
_URL = "https://catalog.ldc.upenn.edu/LDC2024T09"
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_PATCH_URLs = {
"dev": "https://raw.githubusercontent.com/DFKI-NLP/tacrev/master/patch/dev_patch.json",
"test": "https://raw.githubusercontent.com/DFKI-NLP/tacrev/master/patch/test_patch.json",
}
_RETACRED_PATCH_URLs = {
"train": "https://raw.githubusercontent.com/gstoica27/Re-TACRED/master/Re-TACRED/train_id2label.json",
"dev": "https://raw.githubusercontent.com/gstoica27/Re-TACRED/master/Re-TACRED/dev_id2label.json",
"test": "https://raw.githubusercontent.com/gstoica27/Re-TACRED/master/Re-TACRED/test_id2label.json"
}
_BACKTRANSLATION_TEST_SPLIT = "backtranslated_test"
_RETACRED = "retacred"
_REVISITED = "revisited"
_ORIGINAL = "original"
_VERSION = datasets.Version("1.1.0")
_LANGS = [
"ar",
"de",
"es",
"fi",
"fr",
"hi",
"hu",
"ja",
"pl",
"ru",
"tr",
"zh",
]
_CLASS_LABELS = [
"no_relation",
"org:alternate_names",
"org:city_of_headquarters",
"org:country_of_headquarters",
"org:dissolved",
"org:founded",
"org:founded_by",
"org:member_of",
"org:members",
"org:number_of_employees/members",
"org:parents",
"org:political/religious_affiliation",
"org:shareholders",
"org:stateorprovince_of_headquarters",
"org:subsidiaries",
"org:top_members/employees",
"org:website",
"per:age",
"per:alternate_names",
"per:cause_of_death",
"per:charges",
"per:children",
"per:cities_of_residence",
"per:city_of_birth",
"per:city_of_death",
"per:countries_of_residence",
"per:country_of_birth",
"per:country_of_death",
"per:date_of_birth",
"per:date_of_death",
"per:employee_of",
"per:origin",
"per:other_family",
"per:parents",
"per:religion",
"per:schools_attended",
"per:siblings",
"per:spouse",
"per:stateorprovince_of_birth",
"per:stateorprovince_of_death",
"per:stateorprovinces_of_residence",
"per:title",
]
_RETACRED_CLASS_LABELS = [
"no_relation",
"org:alternate_names",
"org:city_of_branch",
"org:country_of_branch",
"org:dissolved",
"org:founded",
"org:founded_by",
"org:member_of",
"org:members",
"org:number_of_employees/members",
"org:political/religious_affiliation",
"org:shareholders",
"org:stateorprovince_of_branch",
"org:top_members/employees",
"org:website",
"per:age",
"per:cause_of_death",
"per:charges",
"per:children",
"per:cities_of_residence",
"per:city_of_birth",
"per:city_of_death",
"per:countries_of_residence",
"per:country_of_birth",
"per:country_of_death",
"per:date_of_birth",
"per:date_of_death",
"per:employee_of",
"per:identity",
"per:origin",
"per:other_family",
"per:parents",
"per:religion",
"per:schools_attended",
"per:siblings",
"per:spouse",
"per:stateorprovince_of_birth",
"per:stateorprovince_of_death",
"per:stateorprovinces_of_residence",
"per:title"
]
_NER_CLASS_LABELS = [
"LOCATION",
"ORGANIZATION",
"PERSON",
"DATE",
"MONEY",
"PERCENT",
"TIME",
"CAUSE_OF_DEATH",
"CITY",
"COUNTRY",
"CRIMINAL_CHARGE",
"EMAIL",
"HANDLE",
"IDEOLOGY",
"NATIONALITY",
"RELIGION",
"STATE_OR_PROVINCE",
"TITLE",
"URL",
"NUMBER",
"ORDINAL",
"MISC",
"DURATION",
"O",
]
_DESC_TEXTS = {_ORIGINAL: 'The original TACRED.',
_REVISITED: 'TACRED Revisited (corrected labels for 5k most challenging examples in dev and test split).',
_RETACRED: 'Relabeled TACRED (corrected labels for all splits and pruned)'}
def convert_ptb_token(token: str) -> str:
"""Convert PTB tokens to normal tokens"""
return {
"-lrb-": "(",
"-rrb-": ")",
"-lsb-": "[",
"-rsb-": "]",
"-lcb-": "{",
"-rcb-": "}",
}.get(token.lower(), token)
class MultiTacredConfig(datasets.BuilderConfig):
"""BuilderConfig for MultiTacred."""
def __init__(self, label_variant, language, **kwargs):
"""BuilderConfig for MultiTacred.
Args:
label_variant: `string`, source of labels, i.e. 'original', 'revisited' or 'retacred'
language: `string`, 2-letter ISO 639-1 language code
**kwargs: keyword arguments forwarded to super.
"""
super(MultiTacredConfig, self).__init__(version=_VERSION, **kwargs)
self.language = language
self.label_variant = label_variant
class MultiTacred(datasets.GeneratorBasedBuilder):
"""MultiTACRED is a multilingual version of the large-scale TAC Relation Extraction Dataset (LDC2018T24)."""
BUILDER_CONFIGS = [
MultiTacredConfig(
name=f"{label_variant}-{language}",
language=language,
label_variant=label_variant,
description=f"{_DESC_TEXTS[label_variant]} examples in language '{language}'.",
)
for (language, label_variant) in itertools.product(_LANGS, [_ORIGINAL, _REVISITED, _RETACRED])
]
@property
def manual_download_instructions(self):
return (
"To use MultiTACRED you have to download it manually. "
"It is available via the LDC at https://catalog.ldc.upenn.edu/LDC2024T09"
"Please extract all files in one folder and load the a language with: "
"`datasets.load_dataset('DFKI-SLT/multitacred', name='variant-language', data_dir='path/to/folder/folder_name')`."
)
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"token": datasets.Sequence(datasets.Value("string")),
"subj_start": datasets.Value("int32"),
"subj_end": datasets.Value("int32"),
"subj_type": datasets.ClassLabel(names=_NER_CLASS_LABELS),
"obj_start": datasets.Value("int32"),
"obj_end": datasets.Value("int32"),
"obj_type": datasets.ClassLabel(names=_NER_CLASS_LABELS),
"relation": datasets.ClassLabel(
names=_RETACRED_CLASS_LABELS if self.config.label_variant == _RETACRED else _CLASS_LABELS),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(data_dir):
raise FileNotFoundError(
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset("
"'DFKI-SLT/multitacred', name=..., data_dir=...)` that includes the unzipped files from the "
"MULTITACRED_LDC zip. Manual download instructions: {}".format(
data_dir, self.manual_download_instructions
)
)
patch_files = {}
if self.config.label_variant == _REVISITED:
patch_files = dl_manager.download_and_extract(_PATCH_URLs)
elif self.config.label_variant == _RETACRED:
patch_files = dl_manager.download_and_extract(_RETACRED_PATCH_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, self.config.language, f"train_{self.config.language}.json"),
"patch_filepath": patch_files.get("train"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, self.config.language, f"test_{self.config.language}.json"),
"patch_filepath": patch_files.get("test"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, self.config.language, f"dev_{self.config.language}.json"),
"patch_filepath": patch_files.get("dev"),
},
),
datasets.SplitGenerator(
name=_BACKTRANSLATION_TEST_SPLIT,
gen_kwargs={
"filepath": os.path.join(data_dir, self.config.language, f"test_en_{self.config.language}_bt.json"),
"patch_filepath": patch_files.get("test"),
},
),
]
def _generate_examples(self, filepath, patch_filepath):
"""Yields examples."""
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
patch_examples = {}
if patch_filepath is not None:
with open(patch_filepath, encoding="utf-8") as f:
if self.config.label_variant == _REVISITED:
patch_examples = {example["id"]: example for example in json.load(f)}
elif self.config.label_variant == _RETACRED:
patch_examples = {_id: {"id": _id, "relation": label} for _id, label in json.load(f).items()}
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for example in data:
id_ = example["id"]
if id_ in patch_examples:
example.update(patch_examples[id_])
elif self.config.label_variant == _RETACRED:
# RE-TACRED was pruned, skip example if its id is not in patch_examples
continue
yield id_, {
"id": example["id"],
"token": [convert_ptb_token(token) for token in example["token"]],
"subj_start": example["subj_start"],
"subj_end": example["subj_end"] + 1, # make end offset exclusive
"subj_type": example["subj_type"],
"obj_start": example["obj_start"],
"obj_end": example["obj_end"] + 1, # make end offset exclusive
"obj_type": example["obj_type"],
"relation": example["relation"],
}
|