Datasets:

dfki-nlp commited on
Commit
0351aac
1 Parent(s): 5aaf8e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +190 -24
README.md CHANGED
@@ -8,43 +8,211 @@ languages:
8
  licenses: []
9
  multilinguality:
10
  - monolingual
 
 
 
 
 
11
  task_categories:
12
  - structure-prediction
13
  task_ids:
14
  - parsing
15
  ---
16
 
17
- # Information Card for Brat
18
 
19
  ## Table of Contents
20
- - [Description](#dataset-description)
21
  - [Dataset Summary](#dataset-summary)
 
22
  - [Languages](#languages)
23
- - [Annotation Information](#dataset-structure)
 
 
 
 
 
 
 
 
 
 
 
 
24
  - [Additional Information](#additional-information)
 
25
  - [Licensing Information](#licensing-information)
26
  - [Citation Information](#citation-information)
27
 
28
- ## Description
29
 
30
- - **Homepage:** https://brat.nlplab.org
31
- - **Paper:** https://aclanthology.org/E12-2021/
 
32
  - **Leaderboard:** [Needs More Information]
33
  - **Point of Contact:** [Needs More Information]
34
 
35
- ### Summary
36
 
37
- Brat is an intuitive web-based tool for text annotation supported by Natural Language Processing (NLP) technology. BRAT has been developed for rich structured annota- tion for a variety of NLP tasks and aims to support manual curation efforts and increase annotator productivity using NLP techniques. brat is designed in particular for structured annotation, where the notes are not free form text but have a fixed form that can be automatically processed and interpreted by a computer.
 
 
 
 
38
 
39
  ### Languages
40
 
41
  English.
42
 
43
- ## Annotation Information
44
- Annotations created in brat are stored on disk in a standoff format: annotations are stored separately from the annotated document text, which is never modified by the tool. For each text document in the system, there is a corresponding annotation file. The two are associatied by the file naming convention that their base name (file name without suffix) is the same: for example, the file DOC-1000.ann contains annotations for the file DOC-1000.txt. More information can be found [here](https://brat.nlplab.org/standoff.html).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  ## Additional Information
47
 
 
 
 
 
48
  ### Licensing Information
49
 
50
  [Needs More Information]
@@ -52,20 +220,18 @@ Annotations created in brat are stored on disk in a standoff format: annotations
52
  ### Citation Information
53
 
54
  ```
55
- @inproceedings{stenetorp-etal-2012-brat,
56
- title = "brat: a Web-based Tool for {NLP}-Assisted Text Annotation",
57
- author = "Stenetorp, Pontus and
58
- Pyysalo, Sampo and
59
- Topi{\'c}, Goran and
60
- Ohta, Tomoko and
61
- Ananiadou, Sophia and
62
- Tsujii, Jun{'}ichi",
63
- booktitle = "Proceedings of the Demonstrations at the 13th Conference of the {E}uropean Chapter of the Association for Computational Linguistics",
64
- month = apr,
65
- year = "2012",
66
- address = "Avignon, France",
67
  publisher = "Association for Computational Linguistics",
68
- url = "https://aclanthology.org/E12-2021",
69
- pages = "102--107",
 
 
70
  }
71
  ```
 
8
  licenses: []
9
  multilinguality:
10
  - monolingual
11
+ pretty_name: Scientific Dependency Tree Bank
12
+ size_categories:
13
+ - unknown
14
+ source_datasets:
15
+ - original
16
  task_categories:
17
  - structure-prediction
18
  task_ids:
19
  - parsing
20
  ---
21
 
22
+ # Dataset Card for SciDTB
23
 
24
  ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
  - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
  - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
  - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
  - [Licensing Information](#licensing-information)
45
  - [Citation Information](#citation-information)
46
 
47
+ ## Dataset Description
48
 
49
+ - **Homepage:** https://github.com/PKU-TANGENT/SciDTB
50
+ - **Repository:** https://github.com/PKU-TANGENT/SciDTB
51
+ - **Paper:** https://aclanthology.org/P18-2071/
52
  - **Leaderboard:** [Needs More Information]
53
  - **Point of Contact:** [Needs More Information]
54
 
55
+ ### Dataset Summary
56
 
57
+ SciDTB is a domain-specific discourse treebank annotated on scientific articles written in English-language. Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is flexible and simplified to some extent but do not sacrifice structural integrity. Furthermore, this treebank is made as a benchmark for evaluating discourse dependency parsers. This dataset can benefit many downstream NLP tasks such as machine translation and automatic summarization.
58
+
59
+ ### Supported Tasks and Leaderboards
60
+
61
+ [Needs More Information]
62
 
63
  ### Languages
64
 
65
  English.
66
 
67
+ ## Dataset Structure
68
+
69
+ ### Data Instances
70
+
71
+ A typical data point consist of `root` which is a list of nodes in dependency tree. Each node in the list has four fields: `id` containing id for the node, `parent` contains id of the parent node, `text` refers to the span that is part of the current node and finally `relation` represents relation between current node and parent node.
72
+
73
+ An example from SciDTB train set is given below:
74
+
75
+ ```
76
+ {
77
+ "root": [
78
+ {
79
+ "id": 0,
80
+ "parent": -1,
81
+ "text": "ROOT",
82
+ "relation": "null"
83
+ },
84
+ {
85
+ "id": 1,
86
+ "parent": 0,
87
+ "text": "We propose a neural network approach ",
88
+ "relation": "ROOT"
89
+ },
90
+ {
91
+ "id": 2,
92
+ "parent": 1,
93
+ "text": "to benefit from the non-linearity of corpus-wide statistics for part-of-speech ( POS ) tagging . <S>",
94
+ "relation": "enablement"
95
+ },
96
+ {
97
+ "id": 3,
98
+ "parent": 1,
99
+ "text": "We investigated several types of corpus-wide information for the words , such as word embeddings and POS tag distributions . <S>",
100
+ "relation": "elab-aspect"
101
+ },
102
+ {
103
+ "id": 4,
104
+ "parent": 5,
105
+ "text": "Since these statistics are encoded as dense continuous features , ",
106
+ "relation": "cause"
107
+ },
108
+ {
109
+ "id": 5,
110
+ "parent": 3,
111
+ "text": "it is not trivial to combine these features ",
112
+ "relation": "elab-addition"
113
+ },
114
+ {
115
+ "id": 6,
116
+ "parent": 5,
117
+ "text": "comparing with sparse discrete features . <S>",
118
+ "relation": "comparison"
119
+ },
120
+ {
121
+ "id": 7,
122
+ "parent": 1,
123
+ "text": "Our tagger is designed as a combination of a linear model for discrete features and a feed-forward neural network ",
124
+ "relation": "elab-aspect"
125
+ },
126
+ {
127
+ "id": 8,
128
+ "parent": 7,
129
+ "text": "that captures the non-linear interactions among the continuous features . <S>",
130
+ "relation": "elab-addition"
131
+ },
132
+ {
133
+ "id": 9,
134
+ "parent": 10,
135
+ "text": "By using several recent advances in the activation functions for neural networks , ",
136
+ "relation": "manner-means"
137
+ },
138
+ {
139
+ "id": 10,
140
+ "parent": 1,
141
+ "text": "the proposed method marks new state-of-the-art accuracies for English POS tagging tasks . <S>",
142
+ "relation": "evaluation"
143
+ }
144
+ ]
145
+ }
146
+ ```
147
+
148
+ More such raw data instance can be found [here](https://github.com/PKU-TANGENT/SciDTB/tree/master/dataset)
149
+
150
+ ### Data Fields
151
+
152
+ - id: an integer identifier for the node
153
+ - parent: an integer identifier for the parent node
154
+ - text: a string containing text for the current node
155
+ - relation: a string representing discourse relation between current node and parent node
156
+
157
+ ### Data Splits
158
+
159
+ Dataset consists of three splits: `train`, `dev` and `test`.
160
+
161
+ | Train | Valid | Test |
162
+ | ------ | ----- | ---- |
163
+ | 743 | 154 | 152|
164
+
165
+
166
+ ## Dataset Creation
167
+
168
+ ### Curation Rationale
169
+
170
+ [Needs More Information]
171
+
172
+ ### Source Data
173
+
174
+ #### Initial Data Collection and Normalization
175
+
176
+ [Needs More Information]
177
+
178
+ #### Who are the source language producers?
179
+
180
+ [Needs More Information]
181
+
182
+ ### Annotations
183
+
184
+ #### Annotation process
185
+
186
+ More information can be found [here](https://aclanthology.org/P18-2071/)
187
+
188
+ #### Who are the annotators?
189
+
190
+ [Needs More Information]
191
+
192
+ ### Personal and Sensitive Information
193
+
194
+ [Needs More Information]
195
+
196
+ ## Considerations for Using the Data
197
+
198
+ ### Social Impact of Dataset
199
+
200
+ [Needs More Information]
201
+
202
+ ### Discussion of Biases
203
+
204
+ [Needs More Information]
205
+
206
+ ### Other Known Limitations
207
+
208
+ [Needs More Information]
209
 
210
  ## Additional Information
211
 
212
+ ### Dataset Curators
213
+
214
+ [Needs More Information]
215
+
216
  ### Licensing Information
217
 
218
  [Needs More Information]
 
220
  ### Citation Information
221
 
222
  ```
223
+ @inproceedings{yang-li-2018-scidtb,
224
+ title = "{S}ci{DTB}: Discourse Dependency {T}ree{B}ank for Scientific Abstracts",
225
+ author = "Yang, An and
226
+ Li, Sujian",
227
+ booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
228
+ month = jul,
229
+ year = "2018",
230
+ address = "Melbourne, Australia",
 
 
 
 
231
  publisher = "Association for Computational Linguistics",
232
+ url = "https://aclanthology.org/P18-2071",
233
+ doi = "10.18653/v1/P18-2071",
234
+ pages = "444--449",
235
+ abstract = "Annotation corpus for discourse relations benefits NLP tasks such as machine translation and question answering. In this paper, we present SciDTB, a domain-specific discourse treebank annotated on scientific articles. Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is flexible and simplified to some extent but do not sacrifice structural integrity. We discuss the labeling framework, annotation workflow and some statistics about SciDTB. Furthermore, our treebank is made as a benchmark for evaluating discourse dependency parsers, on which we provide several baselines as fundamental work.",
236
  }
237
  ```