Datasets:
Add science_ie default config that only converts the original structure to a dictionary format
Browse files- README.md +127 -55
- science_ie.py +178 -113
README.md
CHANGED
@@ -51,7 +51,7 @@ dataset_info:
|
|
51 |
- name: test
|
52 |
num_bytes: 399069
|
53 |
num_examples: 838
|
54 |
-
download_size:
|
55 |
dataset_size: 1788822
|
56 |
- config_name: re
|
57 |
features:
|
@@ -80,8 +80,8 @@ dataset_info:
|
|
80 |
'2': Hyponym-of
|
81 |
splits:
|
82 |
- name: train
|
83 |
-
num_bytes:
|
84 |
-
num_examples:
|
85 |
- name: validation
|
86 |
num_bytes: 2347796
|
87 |
num_examples: 4838
|
@@ -89,7 +89,57 @@ dataset_info:
|
|
89 |
num_bytes: 2835275
|
90 |
num_examples: 6618
|
91 |
download_size: 13704567
|
92 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
- config_name: subtask_a
|
94 |
features:
|
95 |
- name: id
|
@@ -105,7 +155,7 @@ dataset_info:
|
|
105 |
'2': I
|
106 |
splits:
|
107 |
- name: train
|
108 |
-
num_bytes:
|
109 |
num_examples: 2388
|
110 |
- name: validation
|
111 |
num_bytes: 204095
|
@@ -114,7 +164,7 @@ dataset_info:
|
|
114 |
num_bytes: 399069
|
115 |
num_examples: 838
|
116 |
download_size: 13704567
|
117 |
-
dataset_size:
|
118 |
- config_name: subtask_b
|
119 |
features:
|
120 |
- name: id
|
@@ -131,7 +181,7 @@ dataset_info:
|
|
131 |
'3': T
|
132 |
splits:
|
133 |
- name: train
|
134 |
-
num_bytes:
|
135 |
num_examples: 2388
|
136 |
- name: validation
|
137 |
num_bytes: 204095
|
@@ -140,7 +190,7 @@ dataset_info:
|
|
140 |
num_bytes: 399069
|
141 |
num_examples: 838
|
142 |
download_size: 13704567
|
143 |
-
dataset_size:
|
144 |
- config_name: subtask_c
|
145 |
features:
|
146 |
- name: id
|
@@ -157,7 +207,7 @@ dataset_info:
|
|
157 |
'2': H
|
158 |
splits:
|
159 |
- name: train
|
160 |
-
num_bytes:
|
161 |
num_examples: 2388
|
162 |
- name: validation
|
163 |
num_bytes: 3575511
|
@@ -166,17 +216,7 @@ dataset_info:
|
|
166 |
num_bytes: 6431513
|
167 |
num_examples: 838
|
168 |
download_size: 13704567
|
169 |
-
dataset_size:
|
170 |
-
configs:
|
171 |
-
- config_name: ner
|
172 |
-
data_files:
|
173 |
-
- split: train
|
174 |
-
path: ner/train-*
|
175 |
-
- split: validation
|
176 |
-
path: ner/validation-*
|
177 |
-
- split: test
|
178 |
-
path: ner/test-*
|
179 |
-
default: true
|
180 |
---
|
181 |
|
182 |
# Dataset Card for ScienceIE
|
@@ -212,8 +252,6 @@ configs:
|
|
212 |
- **Repository:** [https://github.com/ScienceIE/scienceie.github.io](https://github.com/ScienceIE/scienceie.github.io)
|
213 |
- **Paper:** [SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications](https://arxiv.org/abs/1704.02853)
|
214 |
- **Leaderboard:** [https://competitions.codalab.org/competitions/15898](https://competitions.codalab.org/competitions/15898)
|
215 |
-
- **Size of downloaded dataset files:** 13.7 MB
|
216 |
-
- **Size of generated dataset files:** 17.4 MB
|
217 |
|
218 |
### Dataset Summary
|
219 |
|
@@ -236,7 +274,8 @@ There are three subtasks:
|
|
236 |
- HYPONYM-OF: The relationship between two keyphrases A and B is HYPONYM-OF if semantic field of A is included within that of B. One example is Red HYPONYM-OF Color.
|
237 |
- SYNONYM-OF: The relationship between two keyphrases A and B is SYNONYM-OF if they both denote the same semantic field, for example Machine Learning SYNONYM-OF ML.
|
238 |
|
239 |
-
Note:
|
|
|
240 |
|
241 |
### Supported Tasks and Leaderboards
|
242 |
|
@@ -251,11 +290,31 @@ The language in the dataset is English.
|
|
251 |
|
252 |
### Data Instances
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
#### subtask_a
|
255 |
-
|
256 |
-
- **Size of the generated dataset:** 17.4 MB
|
257 |
-
|
258 |
-
An example of 'train' looks as follows:
|
259 |
```json
|
260 |
{
|
261 |
"id": "S0375960115004120_1",
|
@@ -264,10 +323,7 @@ An example of 'train' looks as follows:
|
|
264 |
}
|
265 |
```
|
266 |
#### subtask_b
|
267 |
-
|
268 |
-
- **Size of the generated dataset:** 17.4 MB
|
269 |
-
|
270 |
-
An example of 'train' looks as follows:
|
271 |
```json
|
272 |
{
|
273 |
"id": "S0375960115004120_2",
|
@@ -277,10 +333,7 @@ An example of 'train' looks as follows:
|
|
277 |
```
|
278 |
|
279 |
#### subtask_c
|
280 |
-
|
281 |
-
- **Size of the generated dataset:** 30.1 MB
|
282 |
-
|
283 |
-
An example of 'train' looks as follows:
|
284 |
```json
|
285 |
{
|
286 |
"id": "S0375960115004120_3",
|
@@ -292,10 +345,7 @@ Note: The tag sequence consists of vectors for each token, that encode what the
|
|
292 |
and every other token in the sequence is for the first token in each key phrase.
|
293 |
|
294 |
#### ner
|
295 |
-
|
296 |
-
- **Size of the generated dataset:** 17.4 MB
|
297 |
-
|
298 |
-
An example of 'train' looks as follows:
|
299 |
```json
|
300 |
{
|
301 |
"id": "S0375960115004120_4",
|
@@ -305,10 +355,7 @@ An example of 'train' looks as follows:
|
|
305 |
```
|
306 |
|
307 |
#### re
|
308 |
-
|
309 |
-
- **Size of the generated dataset:** 16.4 MB
|
310 |
-
|
311 |
-
An example of 'train' looks as follows:
|
312 |
```json
|
313 |
{
|
314 |
"id": "S0375960115004120_5",
|
@@ -325,12 +372,36 @@ An example of 'train' looks as follows:
|
|
325 |
|
326 |
### Data Fields
|
327 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
#### subtask_a
|
329 |
- `id`: the instance id of this sentence, a `string` feature.
|
330 |
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
331 |
- `tags`: the list of tags of this sentence marking a token as being outside, at the beginning, or inside a key phrase, a `list` of classification labels.
|
332 |
|
333 |
-
```
|
334 |
{"O": 0, "B": 1, "I": 2}
|
335 |
```
|
336 |
|
@@ -339,7 +410,7 @@ An example of 'train' looks as follows:
|
|
339 |
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
340 |
- `tags`: the list of tags of this sentence marking a token as being outside a key phrase, or being part of a material, process or task, a `list` of classification labels.
|
341 |
|
342 |
-
```
|
343 |
{"O": 0, "M": 1, "P": 2, "T": 3}
|
344 |
```
|
345 |
|
@@ -348,7 +419,7 @@ An example of 'train' looks as follows:
|
|
348 |
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
349 |
- `tags`: a vector for each token, that encodes what the relationship between that token and every other token in the sequence is for the first token in each key phrase, a `list` of a `list` of a classification label.
|
350 |
|
351 |
-
```
|
352 |
{"O": 0, "S": 1, "H": 2}
|
353 |
```
|
354 |
|
@@ -357,7 +428,7 @@ An example of 'train' looks as follows:
|
|
357 |
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
358 |
- `tags`: the list of ner tags of this sentence, a `list` of classification labels.
|
359 |
|
360 |
-
```
|
361 |
{"O": 0, "B-Material": 1, "I-Material": 2, "B-Process": 3, "I-Process": 4, "B-Task": 5, "I-Task": 6}
|
362 |
```
|
363 |
|
@@ -372,19 +443,20 @@ An example of 'train' looks as follows:
|
|
372 |
- `arg2_type`: the key phrase type of the relation arg2 mention, a `string` feature.
|
373 |
- `relation`: the relation label of this instance, a classification label.
|
374 |
|
375 |
-
```
|
376 |
{"O": 0, "Synonym-of": 1, "Hyponym-of": 2}
|
377 |
```
|
378 |
|
379 |
### Data Splits
|
380 |
|
381 |
-
|
|
382 |
-
|
383 |
-
|
|
384 |
-
|
|
385 |
-
|
|
386 |
-
|
|
387 |
-
|
|
|
|
388 |
|
389 |
## Dataset Creation
|
390 |
|
|
|
51 |
- name: test
|
52 |
num_bytes: 399069
|
53 |
num_examples: 838
|
54 |
+
download_size: 13704567
|
55 |
dataset_size: 1788822
|
56 |
- config_name: re
|
57 |
features:
|
|
|
80 |
'2': Hyponym-of
|
81 |
splits:
|
82 |
- name: train
|
83 |
+
num_bytes: 11737101
|
84 |
+
num_examples: 24556
|
85 |
- name: validation
|
86 |
num_bytes: 2347796
|
87 |
num_examples: 4838
|
|
|
89 |
num_bytes: 2835275
|
90 |
num_examples: 6618
|
91 |
download_size: 13704567
|
92 |
+
dataset_size: 16920172
|
93 |
+
- config_name: science_ie
|
94 |
+
features:
|
95 |
+
- name: id
|
96 |
+
dtype: string
|
97 |
+
- name: text
|
98 |
+
dtype: string
|
99 |
+
- name: keyphrases
|
100 |
+
list:
|
101 |
+
- name: id
|
102 |
+
dtype: string
|
103 |
+
- name: start
|
104 |
+
dtype: int32
|
105 |
+
- name: end
|
106 |
+
dtype: int32
|
107 |
+
- name: type
|
108 |
+
dtype:
|
109 |
+
class_label:
|
110 |
+
names:
|
111 |
+
'0': Material
|
112 |
+
'1': Process
|
113 |
+
'2': Task
|
114 |
+
- name: type_
|
115 |
+
dtype: string
|
116 |
+
- name: relations
|
117 |
+
list:
|
118 |
+
- name: arg1
|
119 |
+
dtype: string
|
120 |
+
- name: arg2
|
121 |
+
dtype: string
|
122 |
+
- name: relation
|
123 |
+
dtype:
|
124 |
+
class_label:
|
125 |
+
names:
|
126 |
+
'0': O
|
127 |
+
'1': Synonym-of
|
128 |
+
'2': Hyponym-of
|
129 |
+
- name: relation_
|
130 |
+
dtype: string
|
131 |
+
splits:
|
132 |
+
- name: train
|
133 |
+
num_bytes: 640060
|
134 |
+
num_examples: 350
|
135 |
+
- name: validation
|
136 |
+
num_bytes: 112588
|
137 |
+
num_examples: 50
|
138 |
+
- name: test
|
139 |
+
num_bytes: 206857
|
140 |
+
num_examples: 100
|
141 |
+
download_size: 13704567
|
142 |
+
dataset_size: 959505
|
143 |
- config_name: subtask_a
|
144 |
features:
|
145 |
- name: id
|
|
|
155 |
'2': I
|
156 |
splits:
|
157 |
- name: train
|
158 |
+
num_bytes: 1185658
|
159 |
num_examples: 2388
|
160 |
- name: validation
|
161 |
num_bytes: 204095
|
|
|
164 |
num_bytes: 399069
|
165 |
num_examples: 838
|
166 |
download_size: 13704567
|
167 |
+
dataset_size: 1788822
|
168 |
- config_name: subtask_b
|
169 |
features:
|
170 |
- name: id
|
|
|
181 |
'3': T
|
182 |
splits:
|
183 |
- name: train
|
184 |
+
num_bytes: 1185658
|
185 |
num_examples: 2388
|
186 |
- name: validation
|
187 |
num_bytes: 204095
|
|
|
190 |
num_bytes: 399069
|
191 |
num_examples: 838
|
192 |
download_size: 13704567
|
193 |
+
dataset_size: 1788822
|
194 |
- config_name: subtask_c
|
195 |
features:
|
196 |
- name: id
|
|
|
207 |
'2': H
|
208 |
splits:
|
209 |
- name: train
|
210 |
+
num_bytes: 20102706
|
211 |
num_examples: 2388
|
212 |
- name: validation
|
213 |
num_bytes: 3575511
|
|
|
216 |
num_bytes: 6431513
|
217 |
num_examples: 838
|
218 |
download_size: 13704567
|
219 |
+
dataset_size: 30109730
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
---
|
221 |
|
222 |
# Dataset Card for ScienceIE
|
|
|
252 |
- **Repository:** [https://github.com/ScienceIE/scienceie.github.io](https://github.com/ScienceIE/scienceie.github.io)
|
253 |
- **Paper:** [SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications](https://arxiv.org/abs/1704.02853)
|
254 |
- **Leaderboard:** [https://competitions.codalab.org/competitions/15898](https://competitions.codalab.org/competitions/15898)
|
|
|
|
|
255 |
|
256 |
### Dataset Summary
|
257 |
|
|
|
274 |
- HYPONYM-OF: The relationship between two keyphrases A and B is HYPONYM-OF if semantic field of A is included within that of B. One example is Red HYPONYM-OF Color.
|
275 |
- SYNONYM-OF: The relationship between two keyphrases A and B is SYNONYM-OF if they both denote the same semantic field, for example Machine Learning SYNONYM-OF ML.
|
276 |
|
277 |
+
Note: The default config `science_ie` converts the original .txt & .ann files to a dictionary format that is easier to use.
|
278 |
+
For every other configuration the documents were split into sentences using spaCy, resulting in a 2388, 400, 838 split. The `id` consists of the document id and the example index within the document separated by an underscore, e.g. `S0375960115004120_1`. This should enable you to reconstruct the documents from the sentences.
|
279 |
|
280 |
### Supported Tasks and Leaderboards
|
281 |
|
|
|
290 |
|
291 |
### Data Instances
|
292 |
|
293 |
+
#### science_ie
|
294 |
+
An example of "train" looks as follows:
|
295 |
+
```json
|
296 |
+
{
|
297 |
+
"id": "S221266781300018X",
|
298 |
+
"text": "Amodel are proposed for modeling data-centric Web services which are powered by relational databases and interact with users according to logical formulas specifying input constraints, control-flow constraints and state/output/action rules. The Linear Temporal First-Order Logic (LTL-FO) formulas over inputs, states, outputs and actions are used to express the properties to be verified.We have proven that automatic verification of LTL-FO properties of data-centric Web services under input-bounded constraints is decidable by reducing Web services to data-centric Web applications. Thus, we can verify Web service specifications using existing verifier designed for Web applications.",
|
299 |
+
"keyphrases": [
|
300 |
+
{
|
301 |
+
"id": "T1", "start": 24, "end": 58, "type": 2, "type_": "Task"
|
302 |
+
},
|
303 |
+
...,
|
304 |
+
{"id": "T3", "start": 245, "end": 278, "type": 1, "type_": "Process"},
|
305 |
+
{"id": "T4", "start": 280, "end": 286, "type": 1, "type_": "Process"},
|
306 |
+
...
|
307 |
+
],
|
308 |
+
"relations": [
|
309 |
+
{"arg1": "T4", "arg2": "T3", "relation": 1, "relation_": "Synonym-of"},
|
310 |
+
{"arg1": "T3", "arg2": "T4", "relation": 1, "relation_": "Synonym-of"}
|
311 |
+
]
|
312 |
+
}
|
313 |
+
```
|
314 |
+
|
315 |
+
|
316 |
#### subtask_a
|
317 |
+
An example of "train" looks as follows:
|
|
|
|
|
|
|
318 |
```json
|
319 |
{
|
320 |
"id": "S0375960115004120_1",
|
|
|
323 |
}
|
324 |
```
|
325 |
#### subtask_b
|
326 |
+
An example of "train" looks as follows:
|
|
|
|
|
|
|
327 |
```json
|
328 |
{
|
329 |
"id": "S0375960115004120_2",
|
|
|
333 |
```
|
334 |
|
335 |
#### subtask_c
|
336 |
+
An example of "train" looks as follows:
|
|
|
|
|
|
|
337 |
```json
|
338 |
{
|
339 |
"id": "S0375960115004120_3",
|
|
|
345 |
and every other token in the sequence is for the first token in each key phrase.
|
346 |
|
347 |
#### ner
|
348 |
+
An example of "train" looks as follows:
|
|
|
|
|
|
|
349 |
```json
|
350 |
{
|
351 |
"id": "S0375960115004120_4",
|
|
|
355 |
```
|
356 |
|
357 |
#### re
|
358 |
+
An example of "train" looks as follows:
|
|
|
|
|
|
|
359 |
```json
|
360 |
{
|
361 |
"id": "S0375960115004120_5",
|
|
|
372 |
|
373 |
### Data Fields
|
374 |
|
375 |
+
#### science_ie
|
376 |
+
- `id`: the instance id of this document, a `string` feature.
|
377 |
+
- `text`: the text of this document, a `string` feature.
|
378 |
+
- `keyphrases`: the list of keyphrases of this document, a `list` of `dict`.
|
379 |
+
- `id`: the instance id of this keyphrase, a `string` feature.
|
380 |
+
- `start`: the character offset start of this keyphrase, an `int` feature.
|
381 |
+
- `end`: the character offset end of this keyphrase, exclusive, an `int` feature.
|
382 |
+
- `type`: the key phrase type of this keyphrase, a classification label.
|
383 |
+
- `type_`: the key phrase type of this keyphrase, a `string` feature.
|
384 |
+
- `relations`: the list of relations of this document, a `list` of `dict`.
|
385 |
+
- `arg1`: the instance id of the first keyphrase, a `string` feature.
|
386 |
+
- `arg2`: the instance id of the second keyphrase, a `string` feature.
|
387 |
+
- `relation`: the relation label of this instance, a classification label.
|
388 |
+
- `relation_`: the relation label of this instance, a `string` feature.
|
389 |
+
|
390 |
+
Keyphrase types:
|
391 |
+
```json
|
392 |
+
{"O": 0, "Material": 1, "Process": 2, "Task": 3}
|
393 |
+
```
|
394 |
+
Relation types:
|
395 |
+
```json
|
396 |
+
{"O": 0, "Synonym-of": 1, "Hyponym-of": 2}
|
397 |
+
```
|
398 |
+
|
399 |
#### subtask_a
|
400 |
- `id`: the instance id of this sentence, a `string` feature.
|
401 |
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
402 |
- `tags`: the list of tags of this sentence marking a token as being outside, at the beginning, or inside a key phrase, a `list` of classification labels.
|
403 |
|
404 |
+
```json
|
405 |
{"O": 0, "B": 1, "I": 2}
|
406 |
```
|
407 |
|
|
|
410 |
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
411 |
- `tags`: the list of tags of this sentence marking a token as being outside a key phrase, or being part of a material, process or task, a `list` of classification labels.
|
412 |
|
413 |
+
```json
|
414 |
{"O": 0, "M": 1, "P": 2, "T": 3}
|
415 |
```
|
416 |
|
|
|
419 |
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
420 |
- `tags`: a vector for each token, that encodes what the relationship between that token and every other token in the sequence is for the first token in each key phrase, a `list` of a `list` of a classification label.
|
421 |
|
422 |
+
```json
|
423 |
{"O": 0, "S": 1, "H": 2}
|
424 |
```
|
425 |
|
|
|
428 |
- `tokens`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features.
|
429 |
- `tags`: the list of ner tags of this sentence, a `list` of classification labels.
|
430 |
|
431 |
+
```json
|
432 |
{"O": 0, "B-Material": 1, "I-Material": 2, "B-Process": 3, "I-Process": 4, "B-Task": 5, "I-Task": 6}
|
433 |
```
|
434 |
|
|
|
443 |
- `arg2_type`: the key phrase type of the relation arg2 mention, a `string` feature.
|
444 |
- `relation`: the relation label of this instance, a classification label.
|
445 |
|
446 |
+
```json
|
447 |
{"O": 0, "Synonym-of": 1, "Hyponym-of": 2}
|
448 |
```
|
449 |
|
450 |
### Data Splits
|
451 |
|
452 |
+
| | Train | Dev | Test |
|
453 |
+
|------------|-------|------|------|
|
454 |
+
| science_ie | 350 | 50 | 100 |
|
455 |
+
| subtask_a | 2388 | 400 | 838 |
|
456 |
+
| subtask_b | 2388 | 400 | 838 |
|
457 |
+
| subtask_c | 2388 | 400 | 838 |
|
458 |
+
| ner | 2388 | 400 | 838 |
|
459 |
+
| re | 24558 | 4838 | 6618 |
|
460 |
|
461 |
## Dataset Creation
|
462 |
|
science_ie.py
CHANGED
@@ -13,13 +13,11 @@
|
|
13 |
# limitations under the License.
|
14 |
"""ScienceIE is a dataset for the SemEval task of extracting key phrases and relations between them from scientific documents"""
|
15 |
|
16 |
-
|
17 |
import glob
|
18 |
import datasets
|
19 |
|
20 |
from pathlib import Path
|
21 |
from itertools import permutations
|
22 |
-
from spacy.lang.en import English
|
23 |
|
24 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
_CITATION = """\
|
@@ -92,9 +90,10 @@ class ScienceIE(datasets.GeneratorBasedBuilder):
|
|
92 |
"""ScienceIE is a dataset for the task of extracting key phrases and relations between them from scientific
|
93 |
documents"""
|
94 |
|
95 |
-
VERSION = datasets.Version("1.
|
96 |
|
97 |
BUILDER_CONFIGS = [
|
|
|
98 |
datasets.BuilderConfig(name="subtask_a", version=VERSION,
|
99 |
description="Subtask A of ScienceIE for tokens being outside, at the beginning, "
|
100 |
"or inside a key phrase"),
|
@@ -107,10 +106,40 @@ class ScienceIE(datasets.GeneratorBasedBuilder):
|
|
107 |
datasets.BuilderConfig(name="re", version=VERSION, description="Relation extraction part of ScienceIE"),
|
108 |
]
|
109 |
|
110 |
-
DEFAULT_CONFIG_NAME = "
|
111 |
|
112 |
def _info(self):
|
113 |
-
if self.config.name == "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
features = datasets.Features(
|
115 |
{
|
116 |
"id": datasets.Value("string"),
|
@@ -199,8 +228,12 @@ class ScienceIE(datasets.GeneratorBasedBuilder):
|
|
199 |
def _generate_examples(self, dir_path):
|
200 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
201 |
annotation_files = glob.glob(dir_path + "/**/*.ann", recursive=True)
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
204 |
for f_anno_file in annotation_files:
|
205 |
doc_example_idx = 0
|
206 |
f_anno_path = Path(f_anno_file)
|
@@ -209,7 +242,10 @@ class ScienceIE(datasets.GeneratorBasedBuilder):
|
|
209 |
with open(f_anno_path, mode="r", encoding="utf8") as f_anno, \
|
210 |
open(f_text_path, mode="r", encoding="utf8") as f_text:
|
211 |
text = f_text.read().strip()
|
212 |
-
|
|
|
|
|
|
|
213 |
entities = []
|
214 |
synonym_groups = []
|
215 |
hyponyms = []
|
@@ -242,120 +278,149 @@ class ScienceIE(datasets.GeneratorBasedBuilder):
|
|
242 |
print("Spans don't match for anno " + line.strip() + " in file " + f_anno_file)
|
243 |
char_start = int(start)
|
244 |
char_end = int(end)
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
sent_entity_ids.append(entity["id"])
|
272 |
-
for entity in sent_entities:
|
273 |
-
tags[entity["start"]] = "B-" + entity["type"]
|
274 |
-
for i in range(entity["start"] + 1, entity["end"]):
|
275 |
-
tags[i] = "I-" + entity["type"]
|
276 |
-
|
277 |
-
relations = []
|
278 |
-
entity_pairs_in_relation = []
|
279 |
for idx, synonym_group in enumerate(synonym_groups):
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
relations.append(
|
284 |
-
generate_relation(sent_entities, arg1_id, arg2_id,
|
285 |
-
|
286 |
-
for idx, hyponym in enumerate(hyponyms):
|
287 |
-
if hyponym["arg1_id"] in sent_entity_ids and hyponym["arg2_id"] in sent_entity_ids:
|
288 |
-
hyponyms_used[idx] = True
|
289 |
-
relations.append(
|
290 |
-
generate_relation(sent_entities, hyponym["arg1_id"], hyponym["arg2_id"],
|
291 |
-
relation="Hyponym-of"))
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
|
299 |
-
|
300 |
-
doc_example_idx += 1
|
301 |
-
key = f"{doc_id}_{doc_example_idx}"
|
302 |
-
# Yields examples as (key, example) tuples
|
303 |
-
yield key, {
|
304 |
-
"id": key,
|
305 |
-
"tokens": tokens,
|
306 |
-
"tags": [tag[0] for tag in tags]
|
307 |
-
}
|
308 |
-
elif self.config.name == "subtask_b":
|
309 |
-
doc_example_idx += 1
|
310 |
-
key = f"{doc_id}_{doc_example_idx}"
|
311 |
-
# Yields examples as (key, example) tuples
|
312 |
-
key_phrase_tags = []
|
313 |
-
for tag in tags:
|
314 |
-
if tag == "O":
|
315 |
-
key_phrase_tags.append(tag)
|
316 |
-
else:
|
317 |
-
# use first letter of key phrase type
|
318 |
-
key_phrase_tags.append(tag[2])
|
319 |
-
yield key, {
|
320 |
-
"id": key,
|
321 |
-
"tokens": tokens,
|
322 |
-
"tags": key_phrase_tags
|
323 |
-
}
|
324 |
-
elif self.config.name == "subtask_c":
|
325 |
-
doc_example_idx += 1
|
326 |
-
key = f"{doc_id}_{doc_example_idx}"
|
327 |
-
tag_vectors = [["O" for _ in tokens] for _ in tokens]
|
328 |
-
for relation in relations:
|
329 |
-
tag = relation["relation"][0]
|
330 |
-
if tag != "O":
|
331 |
-
tag_vectors[relation["arg1_start"]][relation["arg2_start"]] = tag
|
332 |
-
# Yields examples as (key, example) tuples
|
333 |
-
yield key, {
|
334 |
-
"id": key,
|
335 |
-
"tokens": tokens,
|
336 |
-
"tags": tag_vectors
|
337 |
-
}
|
338 |
-
elif self.config.name == "re":
|
339 |
-
for relation in relations:
|
340 |
doc_example_idx += 1
|
341 |
key = f"{doc_id}_{doc_example_idx}"
|
342 |
# Yields examples as (key, example) tuples
|
343 |
-
|
344 |
"id": key,
|
345 |
-
"tokens": tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
}
|
347 |
-
for k, v in relation.items():
|
348 |
-
example[k] = v
|
349 |
-
yield key, example
|
350 |
-
else: # NER config
|
351 |
-
doc_example_idx += 1
|
352 |
-
key = f"{doc_id}_{doc_example_idx}"
|
353 |
-
# Yields examples as (key, example) tuples
|
354 |
-
yield key, {
|
355 |
-
"id": key,
|
356 |
-
"tokens": tokens,
|
357 |
-
"tags": tags
|
358 |
-
}
|
359 |
|
360 |
assert all(synonym_groups_used) and all(hyponyms_used), \
|
361 |
f"Annotations were lost: {len([e for e in synonym_groups_used if e])} synonym annotations," \
|
|
|
13 |
# limitations under the License.
|
14 |
"""ScienceIE is a dataset for the SemEval task of extracting key phrases and relations between them from scientific documents"""
|
15 |
|
|
|
16 |
import glob
|
17 |
import datasets
|
18 |
|
19 |
from pathlib import Path
|
20 |
from itertools import permutations
|
|
|
21 |
|
22 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
23 |
_CITATION = """\
|
|
|
90 |
"""ScienceIE is a dataset for the task of extracting key phrases and relations between them from scientific
|
91 |
documents"""
|
92 |
|
93 |
+
VERSION = datasets.Version("1.1.0")
|
94 |
|
95 |
BUILDER_CONFIGS = [
|
96 |
+
datasets.BuilderConfig(name="science_ie", version=VERSION, description="Full ScienceIE dataset"),
|
97 |
datasets.BuilderConfig(name="subtask_a", version=VERSION,
|
98 |
description="Subtask A of ScienceIE for tokens being outside, at the beginning, "
|
99 |
"or inside a key phrase"),
|
|
|
106 |
datasets.BuilderConfig(name="re", version=VERSION, description="Relation extraction part of ScienceIE"),
|
107 |
]
|
108 |
|
109 |
+
DEFAULT_CONFIG_NAME = "science_ie"
|
110 |
|
111 |
def _info(self):
|
112 |
+
if self.config.name == "science_ie":
|
113 |
+
features = datasets.Features(
|
114 |
+
{
|
115 |
+
"id": datasets.Value("string"),
|
116 |
+
"text": datasets.Value("string"),
|
117 |
+
"keyphrases": [
|
118 |
+
{
|
119 |
+
"id": datasets.Value("string"),
|
120 |
+
"start": datasets.Value("int32"),
|
121 |
+
"end": datasets.Value("int32"),
|
122 |
+
"type": datasets.features.ClassLabel(
|
123 |
+
names=[
|
124 |
+
"Material",
|
125 |
+
"Process",
|
126 |
+
"Task"
|
127 |
+
]
|
128 |
+
),
|
129 |
+
"type_": datasets.Value("string")
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"relations": [
|
133 |
+
{
|
134 |
+
"arg1": datasets.Value("string"),
|
135 |
+
"arg2": datasets.Value("string"),
|
136 |
+
"relation": datasets.features.ClassLabel(names=["O", "Synonym-of", "Hyponym-of"]),
|
137 |
+
"relation_": datasets.Value("string")
|
138 |
+
}
|
139 |
+
]
|
140 |
+
}
|
141 |
+
)
|
142 |
+
elif self.config.name == "subtask_a":
|
143 |
features = datasets.Features(
|
144 |
{
|
145 |
"id": datasets.Value("string"),
|
|
|
228 |
def _generate_examples(self, dir_path):
|
229 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
230 |
annotation_files = glob.glob(dir_path + "/**/*.ann", recursive=True)
|
231 |
+
if self.config.name != "science_ie":
|
232 |
+
from spacy.lang.en import English
|
233 |
+
word_splitter = English()
|
234 |
+
word_splitter.add_pipe('sentencizer')
|
235 |
+
else:
|
236 |
+
word_splitter = None
|
237 |
for f_anno_file in annotation_files:
|
238 |
doc_example_idx = 0
|
239 |
f_anno_path = Path(f_anno_file)
|
|
|
242 |
with open(f_anno_path, mode="r", encoding="utf8") as f_anno, \
|
243 |
open(f_text_path, mode="r", encoding="utf8") as f_text:
|
244 |
text = f_text.read().strip()
|
245 |
+
if word_splitter:
|
246 |
+
doc = word_splitter(text)
|
247 |
+
else:
|
248 |
+
doc = None
|
249 |
entities = []
|
250 |
synonym_groups = []
|
251 |
hyponyms = []
|
|
|
278 |
print("Spans don't match for anno " + line.strip() + " in file " + f_anno_file)
|
279 |
char_start = int(start)
|
280 |
char_end = int(end)
|
281 |
+
if doc:
|
282 |
+
entity_span = doc.char_span(char_start, char_end, alignment_mode="expand")
|
283 |
+
start = entity_span.start
|
284 |
+
end = entity_span.end
|
285 |
+
entities.append({
|
286 |
+
"id": identifier,
|
287 |
+
"start": start,
|
288 |
+
"end": end,
|
289 |
+
"char_start": char_start,
|
290 |
+
"char_end": char_end,
|
291 |
+
"type": key_type,
|
292 |
+
"type_": key_type
|
293 |
+
})
|
294 |
+
else:
|
295 |
+
entities.append({
|
296 |
+
"id": identifier,
|
297 |
+
"start": char_start,
|
298 |
+
"end": char_end,
|
299 |
+
"type": key_type,
|
300 |
+
"type_": key_type
|
301 |
+
})
|
302 |
+
if self.config.name == "science_ie":
|
303 |
+
# just to pass the assertion at the end of the method, check is not relevant for this config
|
304 |
+
synonym_groups_used = [True for _ in synonym_groups]
|
305 |
+
hyponyms_used = [True for _ in hyponyms]
|
306 |
+
gen_relations = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
for idx, synonym_group in enumerate(synonym_groups):
|
308 |
+
for arg1_id, arg2_id in permutations(synonym_group, 2):
|
309 |
+
gen_relations.append(dict(arg1=arg1_id, arg2=arg2_id, relation="Synonym-of",
|
310 |
+
relation_="Synonym-of"))
|
311 |
+
for hyponym in hyponyms:
|
312 |
+
gen_relations.append(dict(arg1=hyponym["arg1_id"], arg2=hyponym["arg2_id"],
|
313 |
+
relation="Hyponym-of", relation_="Hyponym-of"))
|
314 |
+
yield doc_id, {
|
315 |
+
"id": doc_id,
|
316 |
+
"text": text,
|
317 |
+
"keyphrases": entities,
|
318 |
+
"relations": gen_relations
|
319 |
+
}
|
320 |
+
else:
|
321 |
+
# check if any annotation is lost during sentence splitting
|
322 |
+
synonym_groups_used = [False for _ in synonym_groups]
|
323 |
+
hyponyms_used = [False for _ in hyponyms]
|
324 |
+
for sent in doc.sents:
|
325 |
+
token_offset = sent.start
|
326 |
+
tokens = [token.text for token in sent]
|
327 |
+
tags = ["O" for _ in tokens]
|
328 |
+
sent_entities = []
|
329 |
+
sent_entity_ids = []
|
330 |
+
for entity in entities:
|
331 |
+
if entity["start"] >= sent.start and entity["end"] <= sent.end:
|
332 |
+
sent_entity = {k: v for k, v in entity.items()}
|
333 |
+
sent_entity["start"] -= token_offset
|
334 |
+
sent_entity["end"] -= token_offset
|
335 |
+
sent_entities.append(sent_entity)
|
336 |
+
sent_entity_ids.append(entity["id"])
|
337 |
+
for entity in sent_entities:
|
338 |
+
tags[entity["start"]] = "B-" + entity["type"]
|
339 |
+
for i in range(entity["start"] + 1, entity["end"]):
|
340 |
+
tags[i] = "I-" + entity["type"]
|
341 |
+
|
342 |
+
relations = []
|
343 |
+
entity_pairs_in_relation = []
|
344 |
+
for idx, synonym_group in enumerate(synonym_groups):
|
345 |
+
if all(entity_id in sent_entity_ids for entity_id in synonym_group):
|
346 |
+
synonym_groups_used[idx] = True
|
347 |
+
for arg1_id, arg2_id in permutations(synonym_group, 2):
|
348 |
+
relations.append(
|
349 |
+
generate_relation(sent_entities, arg1_id, arg2_id, relation="Synonym-of"))
|
350 |
+
entity_pairs_in_relation.append((arg1_id, arg2_id))
|
351 |
+
for idx, hyponym in enumerate(hyponyms):
|
352 |
+
if hyponym["arg1_id"] in sent_entity_ids and hyponym["arg2_id"] in sent_entity_ids:
|
353 |
+
hyponyms_used[idx] = True
|
354 |
relations.append(
|
355 |
+
generate_relation(sent_entities, hyponym["arg1_id"], hyponym["arg2_id"],
|
356 |
+
relation="Hyponym-of"))
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
entity_pairs_in_relation.append((arg1_id, arg2_id))
|
359 |
+
entity_pairs = [(arg1["id"], arg2["id"]) for arg1, arg2 in permutations(sent_entities, 2)
|
360 |
+
if (arg1["id"], arg2["id"]) not in entity_pairs_in_relation]
|
361 |
+
for arg1_id, arg2_id in entity_pairs:
|
362 |
+
relations.append(generate_relation(sent_entities, arg1_id, arg2_id, relation="O"))
|
363 |
|
364 |
+
if self.config.name == "subtask_a":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
doc_example_idx += 1
|
366 |
key = f"{doc_id}_{doc_example_idx}"
|
367 |
# Yields examples as (key, example) tuples
|
368 |
+
yield key, {
|
369 |
"id": key,
|
370 |
+
"tokens": tokens,
|
371 |
+
"tags": [tag[0] for tag in tags]
|
372 |
+
}
|
373 |
+
elif self.config.name == "subtask_b":
|
374 |
+
doc_example_idx += 1
|
375 |
+
key = f"{doc_id}_{doc_example_idx}"
|
376 |
+
# Yields examples as (key, example) tuples
|
377 |
+
key_phrase_tags = []
|
378 |
+
for tag in tags:
|
379 |
+
if tag == "O":
|
380 |
+
key_phrase_tags.append(tag)
|
381 |
+
else:
|
382 |
+
# use first letter of key phrase type
|
383 |
+
key_phrase_tags.append(tag[2])
|
384 |
+
yield key, {
|
385 |
+
"id": key,
|
386 |
+
"tokens": tokens,
|
387 |
+
"tags": key_phrase_tags
|
388 |
+
}
|
389 |
+
elif self.config.name == "subtask_c":
|
390 |
+
doc_example_idx += 1
|
391 |
+
key = f"{doc_id}_{doc_example_idx}"
|
392 |
+
tag_vectors = [["O" for _ in tokens] for _ in tokens]
|
393 |
+
for relation in relations:
|
394 |
+
tag = relation["relation"][0]
|
395 |
+
if tag != "O":
|
396 |
+
tag_vectors[relation["arg1_start"]][relation["arg2_start"]] = tag
|
397 |
+
# Yields examples as (key, example) tuples
|
398 |
+
yield key, {
|
399 |
+
"id": key,
|
400 |
+
"tokens": tokens,
|
401 |
+
"tags": tag_vectors
|
402 |
+
}
|
403 |
+
elif self.config.name == "re":
|
404 |
+
for relation in relations:
|
405 |
+
doc_example_idx += 1
|
406 |
+
key = f"{doc_id}_{doc_example_idx}"
|
407 |
+
# Yields examples as (key, example) tuples
|
408 |
+
example = {
|
409 |
+
"id": key,
|
410 |
+
"tokens": tokens
|
411 |
+
}
|
412 |
+
for k, v in relation.items():
|
413 |
+
example[k] = v
|
414 |
+
yield key, example
|
415 |
+
else: # NER config
|
416 |
+
doc_example_idx += 1
|
417 |
+
key = f"{doc_id}_{doc_example_idx}"
|
418 |
+
# Yields examples as (key, example) tuples
|
419 |
+
yield key, {
|
420 |
+
"id": key,
|
421 |
+
"tokens": tokens,
|
422 |
+
"tags": tags
|
423 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
assert all(synonym_groups_used) and all(hyponyms_used), \
|
426 |
f"Annotations were lost: {len([e for e in synonym_groups_used if e])} synonym annotations," \
|