Datasets:

Languages:
English
ArXiv:
License:
File size: 15,104 Bytes
38c47e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7879210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21dd623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7879210
 
 
e6eb656
3783c46
 
 
e6eb656
3783c46
e6eb656
 
3783c46
 
e6eb656
4bbc35b
 
 
 
ab8254e
4bbc35b
7879210
 
e6eb656
7879210
e6eb656
7879210
40d3755
 
7879210
 
 
 
 
 
21dd623
 
 
 
 
7879210
4bbc35b
 
7879210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21dd623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21b7ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7879210
 
 
 
 
 
 
 
 
 
 
 
 
40d3755
 
3783c46
7879210
 
 
4bbc35b
7879210
 
21dd623
4bbc35b
21dd623
7879210
21dd623
 
 
 
 
7879210
 
 
 
 
 
 
 
 
 
631667a
7879210
 
 
 
 
e6eb656
 
96d77a2
e6eb656
 
21b7ee5
e6eb656
 
117f690
96d77a2
 
e6eb656
 
abc0652
7879210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631667a
7879210
 
 
 
edb8ba3
 
 
 
 
 
7879210
 
 
 
 
21dd623
7879210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d77a2
7879210
 
 
 
 
21dd623
 
 
740e9e8
7879210
 
 
 
 
 
 
 
21dd623
 
 
7879210
 
e6eb656
 
96d77a2
e6eb656
 
 
 
 
 
 
96d77a2
 
e6eb656
7a10d1c
 
 
7879210
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# coding=utf-8
# Copyright 2022 The current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The TACRED dataset for English Relation Classification"""

import json
import os

import datasets

_CITATION = """\
@inproceedings{zhang-etal-2017-position,
    title = "Position-aware Attention and Supervised Data Improve Slot Filling",
    author = "Zhang, Yuhao  and
      Zhong, Victor  and
      Chen, Danqi  and
      Angeli, Gabor  and
      Manning, Christopher D.",
    booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D17-1004",
    doi = "10.18653/v1/D17-1004",
    pages = "35--45",
}

@inproceedings{alt-etal-2020-tacred,
    title = "{TACRED} Revisited: A Thorough Evaluation of the {TACRED} Relation Extraction Task",
    author = "Alt, Christoph  and
      Gabryszak, Aleksandra  and
      Hennig, Leonhard",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.142",
    doi = "10.18653/v1/2020.acl-main.142",
    pages = "1558--1569",
}

@article{stoica2021re,
  author    = {George Stoica and
               Emmanouil Antonios Platanios and
               Barnab{\'{a}}s P{\'{o}}czos},
  title     = {Re-TACRED: Addressing Shortcomings of the {TACRED} Dataset},
  journal   = {CoRR},
  volume    = {abs/2104.08398},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.08398},
  eprinttype = {arXiv},
  eprint    = {2104.08398},
  timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-08398.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """\
TACRED is a large-scale relation extraction dataset with 106,264 examples built over newswire
 and web text from the corpus used in the yearly TAC Knowledge Base Population (TAC KBP) challenges.
 Examples in TACRED cover 41 relation types as used in the TAC KBP challenges (e.g., per:schools_attended
 and org:members) or are labeled as no_relation if no defined relation is held. These examples are created
 by combining available human annotations from the TAC KBP challenges and crowdsourcing.

 Please see our EMNLP paper, or our EMNLP slides for full details.

Note: There is currently a label-corrected version of the TACRED dataset, which you should consider using instead of
the original version released in 2017. For more details on this new version, see the TACRED Revisited paper
published at ACL 2020.

Note 2: This Datasetreader changes the offsets of the following fields, to conform with standard Python usage (see
#_generate_examples()):
- subj_end to subj_end + 1 (make end offset exclusive)
- obj_end to obj_end + 1 (make end offset exclusive)
- stanford_head to stanford_head - 1 (make head offsets 0-based)
"""

_HOMEPAGE = "https://nlp.stanford.edu/projects/tacred/"

_LICENSE = "LDC"

_URL = "https://catalog.ldc.upenn.edu/LDC2018T24"

# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_PATCH_URLs = {
    "dev": "https://raw.githubusercontent.com/DFKI-NLP/tacrev/master/patch/dev_patch.json",
    "test": "https://raw.githubusercontent.com/DFKI-NLP/tacrev/master/patch/test_patch.json",
}
_RETACRED_PATCH_URLs = {
    "train": "https://raw.githubusercontent.com/gstoica27/Re-TACRED/master/Re-TACRED/train_id2label.json",
    "dev": "https://raw.githubusercontent.com/gstoica27/Re-TACRED/master/Re-TACRED/dev_id2label.json",
    "test": "https://raw.githubusercontent.com/gstoica27/Re-TACRED/master/Re-TACRED/test_id2label.json"
}

_VERSION = datasets.Version("1.0.0")

_CLASS_LABELS = [
    "no_relation",
    "org:alternate_names",
    "org:city_of_headquarters",
    "org:country_of_headquarters",
    "org:dissolved",
    "org:founded",
    "org:founded_by",
    "org:member_of",
    "org:members",
    "org:number_of_employees/members",
    "org:parents",
    "org:political/religious_affiliation",
    "org:shareholders",
    "org:stateorprovince_of_headquarters",
    "org:subsidiaries",
    "org:top_members/employees",
    "org:website",
    "per:age",
    "per:alternate_names",
    "per:cause_of_death",
    "per:charges",
    "per:children",
    "per:cities_of_residence",
    "per:city_of_birth",
    "per:city_of_death",
    "per:countries_of_residence",
    "per:country_of_birth",
    "per:country_of_death",
    "per:date_of_birth",
    "per:date_of_death",
    "per:employee_of",
    "per:origin",
    "per:other_family",
    "per:parents",
    "per:religion",
    "per:schools_attended",
    "per:siblings",
    "per:spouse",
    "per:stateorprovince_of_birth",
    "per:stateorprovince_of_death",
    "per:stateorprovinces_of_residence",
    "per:title",
]

_RETACRED_CLASS_LABELS = [
    "no_relation",
    "org:alternate_names",
    "org:city_of_branch",
    "org:country_of_branch",
    "org:dissolved",
    "org:founded",
    "org:founded_by",
    "org:member_of",
    "org:members",
    "org:number_of_employees/members",
    "org:political/religious_affiliation",
    "org:shareholders",
    "org:stateorprovince_of_branch",
    "org:top_members/employees",
    "org:website",
    "per:age",
    "per:cause_of_death",
    "per:charges",
    "per:children",
    "per:cities_of_residence",
    "per:city_of_birth",
    "per:city_of_death",
    "per:countries_of_residence",
    "per:country_of_birth",
    "per:country_of_death",
    "per:date_of_birth",
    "per:date_of_death",
    "per:employee_of",
    "per:identity",
    "per:origin",
    "per:other_family",
    "per:parents",
    "per:religion",
    "per:schools_attended",
    "per:siblings",
    "per:spouse",
    "per:stateorprovince_of_birth",
    "per:stateorprovince_of_death",
    "per:stateorprovinces_of_residence",
    "per:title"
]

_NER_CLASS_LABELS = [
    "LOCATION",
    "ORGANIZATION",
    "PERSON",
    "DATE",
    "MONEY",
    "PERCENT",
    "TIME",
    "CAUSE_OF_DEATH",
    "CITY",
    "COUNTRY",
    "CRIMINAL_CHARGE",
    "EMAIL",
    "HANDLE",
    "IDEOLOGY",
    "NATIONALITY",
    "RELIGION",
    "STATE_OR_PROVINCE",
    "TITLE",
    "URL",
    "NUMBER",
    "ORDINAL",
    "MISC",
    "DURATION",
    "O"
]


def convert_ptb_token(token: str) -> str:
    """Convert PTB tokens to normal tokens"""
    return {
        "-lrb-": "(",
        "-rrb-": ")",
        "-lsb-": "[",
        "-rsb-": "]",
        "-lcb-": "{",
        "-rcb-": "}",
    }.get(token.lower(), token)


class Tacred(datasets.GeneratorBasedBuilder):
    """TACRED is a large-scale relation extraction dataset with 106,264 examples built over newswire
    and web text from the corpus used in the yearly TAC Knowledge Base Population (TAC KBP) challenges."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="original", version=_VERSION, description="The original TACRED."
        ),
        datasets.BuilderConfig(
            name="revisited",
            version=_VERSION,
            description="TACRED Revisited (corrected labels for 5k most challenging examples in dev and test split).",
        ),
        datasets.BuilderConfig(
            name="re-tacred",
            version=datasets.Version("1.1.0"),
            description="Relabeled TACRED (corrected labels for all splits and pruned)"
        )
    ]

    DEFAULT_CONFIG_NAME = "original"  # type: ignore

    @property
    def manual_download_instructions(self):
        return (
            "To use TACRED you have to download it manually. "
            "It is available via the LDC at https://catalog.ldc.upenn.edu/LDC2018T24"
            "Please extract all files in one folder and load the dataset with: "
            "`datasets.load_dataset('DFKI-SLT/tacred', data_dir='path/to/folder/folder_name')`"
        )

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "docid": datasets.Value("string"),
                "token": datasets.Sequence(datasets.Value("string")),
                "subj_start": datasets.Value("int32"),
                "subj_end": datasets.Value("int32"),
                "subj_type": datasets.ClassLabel(names=_NER_CLASS_LABELS),
                "obj_start": datasets.Value("int32"),
                "obj_end": datasets.Value("int32"),
                "obj_type": datasets.ClassLabel(names=_NER_CLASS_LABELS),
                "stanford_pos": datasets.Sequence(datasets.Value("string")),
                "stanford_ner": datasets.Sequence(datasets.Value("string")),
                "stanford_deprel": datasets.Sequence(datasets.Value("string")),
                "stanford_head": datasets.Sequence(datasets.Value("int32")),
                "relation": datasets.ClassLabel(names=_RETACRED_CLASS_LABELS if self.config.name == 're-tacred' else _CLASS_LABELS),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))

        if not os.path.exists(data_dir):
            raise FileNotFoundError(
                "{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('DFKI-SLT/tacred', data_dir=...)` that includes the unzipped files from the TACRED_LDC zip. Manual download instructions: {}".format(
                    data_dir, self.manual_download_instructions
                )
            )

        patch_files = {}
        if self.config.name == "revisited":
            patch_files = dl_manager.download_and_extract(_PATCH_URLs)
        elif self.config.name == "re-tacred":
            patch_files = dl_manager.download_and_extract(_RETACRED_PATCH_URLs)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "train.json"),
                    "patch_filepath": patch_files.get("train"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "test.json"),
                    "patch_filepath": patch_files.get("test"),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "dev.json"),
                    "patch_filepath": patch_files.get("dev"),
                },
            ),
        ]

    def _generate_examples(self, filepath, patch_filepath):
        """Yields examples."""
        # This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
        # It is in charge of opening the given file and yielding (key, example) tuples from the dataset
        # The key is not important, it's more here for legacy reason (legacy from tfds)
        patch_examples = {}
        if patch_filepath is not None:
            with open(patch_filepath, encoding="utf-8") as f:
                if self.config.name == "revisited":
                    patch_examples = {example["id"]: example for example in json.load(f)}
                elif self.config.name == "re-tacred":
                    patch_examples = {_id: {"id": _id, "relation": label} for _id, label in json.load(f).items()}

        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)
            for example in data:
                id_ = example["id"]

                if id_ in patch_examples:
                    example.update(patch_examples[id_])
                elif self.config.name == "re-tacred":
                    # RE-TACRED was pruned, skip example if its id is not in patch_examples
                    continue

                yield id_, {
                    "id": example["id"],
                    "docid": example["docid"],
                    "token": [convert_ptb_token(token) for token in example["token"]],
                    "subj_start": example["subj_start"],
                    "subj_end": example["subj_end"] + 1,  # make end offset exclusive
                    "subj_type": example["subj_type"],
                    "obj_start": example["obj_start"],
                    "obj_end": example["obj_end"] + 1,  # make end offset exclusive
                    "obj_type": example["obj_type"],
                    "relation": example["relation"],
                    "stanford_pos": example["stanford_pos"],
                    "stanford_ner": example["stanford_ner"],
                    "stanford_deprel": example["stanford_deprel"],
                    "stanford_head": [
                        head - 1 for head in example["stanford_head"]
                    ],  # make offsets 0-based
                }