File size: 11,430 Bytes
3ecf042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
languages:
- en
licenses:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: wikitext_linked
size_categories:
- 1M<n<10M
source_datasets:
- extended|wikitext
task_categories:
- fill-mask
- token-classification
- text-classification
task_ids:
- masked-language-modeling
- named-entity-recognition
- part-of-speech
- lemmatization
- parsing
- entity-linking-classification
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** -
- **Repository:** [https://github.com/GabrielKP/svo/](https://github.com/GabrielKP/svo/)
- **Paper:** -
- **Leaderboard:** -
- **Point of Contact:** [gabriel.kressin@dfki.de](mailto:gabriel.kressin@dfki.de)
### Dataset Summary
The WikiText language modeling dataset is a collection of over 100 million tokens extracted from
the set of verified Good and Featured articles on Wikipedia. Dependency Relations, POS, NER tags
are marked with [trankit](https://github.com/nlp-uoregon/trankit), entities are linked with
[entity-fishing](https://nerd.readthedocs.io/en/latest/index.html), which also tags another field
of NER tags. The dataset is available under the Creative Commons Attribution-ShareAlike License.
Compared to the preprocessed version of Penn Treebank (PTB), WikiText-2 is over 2 times larger and
WikiText-103 is over 110 times larger. The WikiText dataset also features a far larger vocabulary
and retains the original case, punctuation and numbers - all of which are removed in PTB. As it is
composed of full articles, the dataset is well suited for models that can take advantage of long
term dependencies.
### Supported Tasks and Leaderboards
- masked-language-modeling
- named-entity-recognition
- part-of-speech
- lemmatization
- parsing
- entity-linking-classification
### Languages
English.
## Dataset Structure
### Data Instances
#### wikitext2
- **Size of downloaded dataset files:** ?
- **Size of the generated dataset:** ?
- **Total amount of disk used:** 197.2 MB
An example of 'validation' looks as follows.
```
{
'text': 'It is closely related to the American lobster , H. americanus .',
'original_id': 3,
'tok_span': [[0, 0], [0, 2], [3, 5], [6, 13], [14, 21], [22, 24], [25, 28], [29, 37], [38, 45], [46, 47], [48, 50], [51, 61], [62, 63]],
'tok_upos': ['root', 'PRON', 'AUX', 'ADV', 'ADJ', 'ADP', 'DET', 'ADJ', 'NOUN', 'PUNCT', 'PROPN', 'PROPN', 'PUNCT'],
'tok_xpos': ['root', 'PRP', 'VBZ', 'RB', 'JJ', 'IN', 'DT', 'JJ', 'NN', ',', 'NNP', 'NNP', '.'],
'tok_dephead': [0, 4, 4, 4, 0, 8, 8, 8, 4, 8, 8, 10, 4],
'tok_deprel': ['root', 'nsubj', 'cop', 'advmod', 'root', 'case', 'det', 'amod', 'obl', 'punct', 'appos', 'flat', 'punct'],
'tok_lemma': [None, 'it', 'be', 'closely', 'related', 'to', 'the', 'american', 'lobster', ',', 'H.', 'americanus', '.'],
'tok_ner': [None, 'O', 'O', 'O', 'O', 'O', 'O', 'S-MISC', 'O', 'O', 'O', 'O', 'O'],
'ent_span': [[29, 45]],
'ent_wikipedia_external_ref': ['377397'],
'ent_ner': [None],
'ent_domains': [['Enterprise']],
}
```
#### wikitext103
- **Size of downloaded dataset files:** ?
- **Size of the generated dataset:** ?
- **Total amount of disk used:** 7.82 GB
An example of 'train' looks as follows.
```
{
'text': 'Vision for the PlayStation Portable .',
'original_id': 3,
'tok_span': [[0, 0], [0, 6], [7, 10], [11, 14], [15, 26], [27, 35], [36, 37]],
'tok_upos': ['root', 'NOUN', 'ADP', 'DET', 'PROPN', 'PROPN', 'PUNCT'],
'tok_xpos': ['root', 'NN', 'IN', 'DT', 'NNP', 'NNP', '.'],
'tok_dephead': [0, 0, 5, 5, 5, 1, 1],
'tok_deprel': ['root', 'root', 'case', 'det', 'compound', 'nmod', 'punct'],
'tok_lemma': [None, 'vision', 'for', 'the', 'PlayStation', 'Portable', '.'],
'tok_ner': [None, 'O', 'O', 'O', 'B-MISC', 'E-MISC', 'O'],
'ent_span': [[15, 35]],
'ent_wikipedia_external_ref': ['619009'],
'ent_ner': [None],
'ent_domains': [['Electronics', 'Computer_Science']]
}
```
Use following code to print the examples nicely:
```py
def print_tokens_entities(example):
text = example['text']
print(
"Text:\n"
f" {text}"
"\nOrig-Id: "
f"{example['original_id']}"
"\nTokens:"
)
iterator = enumerate(zip(
example["tok_span"],
example["tok_upos"],
example["tok_xpos"],
example["tok_ner"],
example["tok_dephead"],
example["tok_deprel"],
example["tok_lemma"],
))
print(f" Id | {'token':12} | {'upos':8} | {'xpos':8} | {'ner':8} | {'deph':4} | {'deprel':9} | {'lemma':12} | Id")
print("---------------------------------------------------------------------------------------------------")
for idx, (tok_span, upos, xpos, ner, dephead, deprel, lemma) in iterator:
print(f" {idx:3} | {text[tok_span[0]:tok_span[1]]:12} | {upos:8} | {xpos:8} | {str(ner):8} | {str(dephead):4} | {deprel:9} | {str(lemma):12} | {idx}")
iterator = list(enumerate(zip(
example.get("ent_span", []),
example.get("ent_wikipedia_external_ref", []),
example.get("ent_ner", []),
example.get("ent_domains", []),
)))
if len(iterator) > 0:
print("Entities")
print(f" Id | {'entity':21} | {'wiki_ref':7} | {'ner':7} | domains")
print("--------------------------------------------------------------------")
for idx, ((start, end), wiki_ref, ent_ner, ent_domains) in iterator:
print(f" {idx:3} | {text[start:end]:21} | {str(wiki_ref):7} | {str(ent_ner):7} | {ent_domains}")
```
### Data Fields
The data fields are the same among all splits.
* text: string feature.
* original_id: int feature. Mapping to index within original wikitext dataset.
* tok_span: sequence of (int, int) tuples. Denotes token spans (start inclusive, end exclusive)
within each sentence.
**Note that each sentence includes an artificial root node to align dependency relations.**
* tok_upos: string feature. [Universal Dependency POS tag](https://universaldependencies.org/)
tags. Aligned with tok_span. Root node has tag "root".
* tok_xpos: string geature. [XPOS POS tag](https://trankit.readthedocs.io/en/latest/overview.html#token-list).
Aligned with tok_span. Root node has tag "root".
* tok_dephead: int feature.
[Universal Dependency Head Node](https://universaldependencies.org/introduction.html). Int refers
to tokens in tok_span. Root node has head `0` (itself).
* tok_deprel: [Universal Dependency Relation Description](https://universaldependencies.org/introduction.html).
Refers to the relation between this token and head token. Aligned with tok_span. Root node has
dependency relation "root" to itself.
* tok_lemma: string feature. Lemma of token. Aligend with tok_span.
* tok_ner: string feature. NER tag of token. Marked in BIOS schema (e.g. S-MISC, B-LOC, ...)
Aligned with tok_span. Root node has NER tag `None`.
* ent_span: sequence of (int, int) tuples. Denotes entities found by entity-fishing
(start inclusive, end exclusive).
* ent_wikipedia_external_ref: string feature. External Reference to wikipedia page. You can
access the wikipedia page via the url `https://en.wikipedia.org/wiki?curid=<ent_wikipedia_external_ref>`.
Aligend with ent_span. All entities either have this field, or the `ent_ner` field, but not both.
An empty field is denoted by the string `None`. Aligned with ent_span.
* ent_ner: string feature. Denotes NER tags. An empty field is denoted by the string `None`.
Aligned with ent_span.
"ent_domains": sequence of string. Denotes domains of entity. Can be empty sequence. Aligned with
ent_span.
### Data Splits
| name | train |validation| test|
|-------------------|------:|---------:|----:|
|wikitext103 |4076530| 8607|10062|
|wikitext2 | 82649| 8606|10062|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[https://huggingface.co/datasets/wikitext](https://huggingface.co/datasets/wikitext)
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
1. Started with `wikitext2-raw-v1` and `wikitext103-raw-v1` from [wikitext](https://huggingface.co/datasets/wikitext)
2. Ran datasets through Trankit. Marked all fields starting with `tok`.
In this step, the texts have been split into sentences. To retain the original text sections
you can accumulate over `original_id` (examples are in order).
3. Ran datasets through entity-fishing. Marked all fields starting with `ent`.
#### Who are the annotators?
Machines powered by [DFKI](https://www.dfki.de/web).
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
### Citation Information
Please cite the original creators of wikitext, and the great people
developing trankit and entity-fishing.
```
@misc{merity2016pointer,
title={Pointer Sentinel Mixture Models},
author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
year={2016},
eprint={1609.07843},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{nguyen2021trankit,
title={Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing},
author={Nguyen, Minh Van and Lai, Viet Dac and Veyseh, Amir Pouran Ben and Nguyen, Thien Huu},
booktitle="Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
year={2021}
}
@misc{entity-fishing,
title = {entity-fishing},
howpublished = {\\url{https://github.com/kermitt2/entity-fishing}},
publisher = {GitHub},
year = {2016--2022},
archivePrefix = {swh},
eprint = {1:dir:cb0ba3379413db12b0018b7c3af8d0d2d864139c}
}
```
### Contributions
Thanks to [@GabrielKP](https://github.com/GabrielKP) for adding this dataset.
|