File size: 11,463 Bytes
3ecf042
 
 
 
 
84c911c
3ecf042
84c911c
3ecf042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccedb7a
3ecf042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3eff50
 
3ecf042
 
717f0cb
 
3ecf042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3eff50
 
3ecf042
717f0cb
3ecf042
717f0cb
3ecf042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: wikitext_linked
size_categories:
- 1M<n<10M
source_datasets:
- extended|wikitext
task_categories:
- fill-mask
- token-classification
- text-classification
task_ids:
- masked-language-modeling
- named-entity-recognition
- part-of-speech
- lemmatization
- parsing
- entity-linking-classification
---

# Dataset Card for wikitext_linked

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** -
- **Repository:** [https://github.com/GabrielKP/svo/](https://github.com/GabrielKP/svo/)
- **Paper:** -
- **Leaderboard:** -
- **Point of Contact:** [gabriel.kressin@dfki.de](mailto:gabriel.kressin@dfki.de)

### Dataset Summary

The WikiText language modeling dataset is a collection of over 100 million tokens extracted from
the set of verified Good and Featured articles on Wikipedia. Dependency Relations, POS, NER tags
are marked with [trankit](https://github.com/nlp-uoregon/trankit), entities are linked with
[entity-fishing](https://nerd.readthedocs.io/en/latest/index.html), which also tags another field
of NER tags. The dataset is available under the Creative Commons Attribution-ShareAlike License.

Compared to the preprocessed version of Penn Treebank (PTB), WikiText-2 is over 2 times larger and
WikiText-103 is over 110 times larger. The WikiText dataset also features a far larger vocabulary
and retains the original case, punctuation and numbers - all of which are removed in PTB. As it is
composed of full articles, the dataset is well suited for models that can take advantage of long
term dependencies.

### Supported Tasks and Leaderboards

- masked-language-modeling
- named-entity-recognition
- part-of-speech
- lemmatization
- parsing
- entity-linking-classification

### Languages

English.

## Dataset Structure

### Data Instances

#### wikitext2

- **Size of downloaded dataset files:** 27.3 MB
- **Size of the generated dataset:** 197.2 MB
- **Total amount of disk used:** 197.2 MB

An example of 'validation' looks as follows.
```json
{
    'text': 'It is closely related to the American lobster , H. americanus .',
    'original_id': 3,
    'tok_span': [[0, 0], [0, 2], [3, 5], [6, 13], [14, 21], [22, 24], [25, 28], [29, 37], [38, 45], [46, 47], [48, 50], [51, 61], [62, 63]],
    'tok_upos': ['root', 'PRON', 'AUX', 'ADV', 'ADJ', 'ADP', 'DET', 'ADJ', 'NOUN', 'PUNCT', 'PROPN', 'PROPN', 'PUNCT'],
    'tok_xpos': ['root', 'PRP', 'VBZ', 'RB', 'JJ', 'IN', 'DT', 'JJ', 'NN', ',', 'NNP', 'NNP', '.'],
    'tok_dephead': [0, 4, 4, 4, 0, 8, 8, 8, 4, 8, 8, 10, 4],
    'tok_deprel': ['root', 'nsubj', 'cop', 'advmod', 'root', 'case', 'det', 'amod', 'obl', 'punct', 'appos', 'flat', 'punct'],
    'tok_lemma': [None, 'it', 'be', 'closely', 'related', 'to', 'the', 'american', 'lobster', ',', 'H.', 'americanus', '.'],
    'tok_ner': [None, 'O', 'O', 'O', 'O', 'O', 'O', 'S-MISC', 'O', 'O', 'O', 'O', 'O'],
    'ent_span': [[29, 45]],
    'ent_wikipedia_external_ref': ['377397'],
    'ent_ner': [None],
    'ent_domains': [['Enterprise']],
}
```

#### wikitext103

- **Size of downloaded dataset files:** 1.11 GB
- **Size of the generated dataset:** 7.82 GB
- **Total amount of disk used:** 7.82 GB

An example of 'train' looks as follows.
```json
{
    'text': 'Vision for the PlayStation Portable .',
    'original_id': 3,
    'tok_span': [[0, 0], [0, 6], [7, 10], [11, 14], [15, 26], [27, 35], [36, 37]],
    'tok_upos': ['root', 'NOUN', 'ADP', 'DET', 'PROPN', 'PROPN', 'PUNCT'],
    'tok_xpos': ['root', 'NN', 'IN', 'DT', 'NNP', 'NNP', '.'],
    'tok_dephead': [0, 0, 5, 5, 5, 1, 1],
    'tok_deprel': ['root', 'root', 'case', 'det', 'compound', 'nmod', 'punct'],
    'tok_lemma': [None, 'vision', 'for', 'the', 'PlayStation', 'Portable', '.'],
    'tok_ner': [None, 'O', 'O', 'O', 'B-MISC', 'E-MISC', 'O'],
    'ent_span': [[15, 35]],
    'ent_wikipedia_external_ref': ['619009'],
    'ent_ner': [None],
    'ent_domains': [['Electronics', 'Computer_Science']]
}
```

Use following code to print the examples nicely:
```py
def print_tokens_entities(example):
    text = example['text']
    print(
        "Text:\n"
        f"   {text}"
        "\nOrig-Id: "
        f"{example['original_id']}"
        "\nTokens:"
    )
    iterator = enumerate(zip(
        example["tok_span"],
        example["tok_upos"],
        example["tok_xpos"],
        example["tok_ner"],
        example["tok_dephead"],
        example["tok_deprel"],
        example["tok_lemma"],
    ))
    print(f"    Id  | {'token':12} | {'upos':8} | {'xpos':8} | {'ner':8}  | {'deph':4} | {'deprel':9} | {'lemma':12} | Id")
    print("---------------------------------------------------------------------------------------------------")
    for idx, (tok_span, upos, xpos, ner, dephead, deprel, lemma) in iterator:
        print(f"    {idx:3} | {text[tok_span[0]:tok_span[1]]:12} | {upos:8} | {xpos:8} | {str(ner):8}  | {str(dephead):4} | {deprel:9} | {str(lemma):12} | {idx}")

    iterator = list(enumerate(zip(
        example.get("ent_span", []),
        example.get("ent_wikipedia_external_ref", []),
        example.get("ent_ner", []),
        example.get("ent_domains", []),
    )))
    if len(iterator) > 0:
        print("Entities")
        print(f"    Id  | {'entity':21} | {'wiki_ref':7} | {'ner':7} | domains")
        print("--------------------------------------------------------------------")
        for idx, ((start, end), wiki_ref, ent_ner, ent_domains) in iterator:
            print(f"    {idx:3} | {text[start:end]:21} | {str(wiki_ref):7} | {str(ent_ner):7} | {ent_domains}")
```

### Data Fields

The data fields are the same among all splits.

* text: string feature.
* original_id: int feature. Mapping to index within original wikitext dataset.
* tok_span: sequence of (int, int) tuples. Denotes token spans (start inclusive, end exclusive)
within each sentence.
**Note that each sentence includes an artificial root node to align dependency relations.**
* tok_upos: string feature. [Universal Dependency POS tag](https://universaldependencies.org/)
tags. Aligned with tok_span. Root node has tag "root".
* tok_xpos: string geature. [XPOS POS tag](https://trankit.readthedocs.io/en/latest/overview.html#token-list).
Aligned with tok_span. Root node has tag "root".
* tok_dephead: int feature.
[Universal Dependency Head Node](https://universaldependencies.org/introduction.html). Int refers
to tokens in tok_span. Root node has head `0` (itself).
* tok_deprel: [Universal Dependency Relation Description](https://universaldependencies.org/introduction.html).
Refers to the relation between this token and head token. Aligned with tok_span. Root node has
dependency relation "root" to itself.
* tok_lemma: string feature. Lemma of token. Aligend with tok_span.
* tok_ner: string feature. NER tag of token. Marked in BIOS schema (e.g. S-MISC, B-LOC, ...)
Aligned with tok_span. Root node has NER tag `None`.
* ent_span: sequence of (int, int) tuples. Denotes entities found by entity-fishing
(start inclusive, end exclusive).
* ent_wikipedia_external_ref: string feature. External Reference to wikipedia page. You can
access the wikipedia page via the url `https://en.wikipedia.org/wiki?curid=<ent_wikipedia_external_ref>`.
Aligend with ent_span. All entities either have this field, or the `ent_ner` field, but not both.
An empty field is denoted by the string `None`. Aligned with ent_span.
* ent_ner: string feature. Denotes NER tags. An empty field is denoted by the string `None`.
Aligned with ent_span.
"ent_domains": sequence of string. Denotes domains of entity. Can be empty sequence. Aligned with
ent_span.

### Data Splits

|       name        | train |validation| test|
|-------------------|------:|---------:|----:|
|wikitext103        |4076530|      8607|10062|
|wikitext2          |  82649|      8606|10062|

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[https://huggingface.co/datasets/wikitext](https://huggingface.co/datasets/wikitext)

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

1. Started with `wikitext2-raw-v1` and `wikitext103-raw-v1` from [wikitext](https://huggingface.co/datasets/wikitext)
2. Ran datasets through Trankit. Marked all fields starting with `tok`.

In this step, the texts have been split into sentences. To retain the original text sections
you can accumulate over `original_id` (examples are in order).

3. Ran datasets through entity-fishing. Marked all fields starting with `ent`.

#### Who are the annotators?

Machines powered by [DFKI](https://www.dfki.de/web).

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

### Citation Information

Please cite the original creators of wikitext, and the great people
developing trankit and entity-fishing.
```
@misc{merity2016pointer,
      title={Pointer Sentinel Mixture Models},
      author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
      year={2016},
      eprint={1609.07843},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

@inproceedings{nguyen2021trankit,
      title={Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing},
      author={Nguyen, Minh Van and Lai, Viet Dac and Veyseh, Amir Pouran Ben and Nguyen, Thien Huu},
      booktitle="Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
      year={2021}
}

@misc{entity-fishing,
    title = {entity-fishing},
    howpublished = {\\url{https://github.com/kermitt2/entity-fishing}},
    publisher = {GitHub},
    year = {2016--2022},
    archivePrefix = {swh},
    eprint = {1:dir:cb0ba3379413db12b0018b7c3af8d0d2d864139c}
}
```

### Contributions

Thanks to [@GabrielKP](https://github.com/GabrielKP) for adding this dataset.