File size: 1,830 Bytes
41174c5
 
dd06fd1
 
 
 
41174c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd06fd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: mit
task_categories:
- text-classification
language:
- ur
---


## Sentiment Analysis Data for the Urdu Language

**Dataset Description:**
This dataset contains a sentiment analysis dataset from Khan et al. (2020).

**Data Structure:**
The data was used for the project on [improving word embeddings with graph knowledge for Low Resource Languages](https://github.com/pyRis/retrofitting-embeddings-lrls?tab=readme-ov-file).

**Citation:**
```bibtex
@inproceedings{khan2017harnessing,
  title={Harnessing English Sentiment Lexicons for Polarity Detection in Urdu Tweets: A Baseline Approach},
  author={Khan, Muhammad Yaseen and Emaduddin, Shah Muhammad and Junejo, Khurum Nazir},
  booktitle={2017 IEEE 11th International Conference on Semantic Computing (ICSC)},
  pages={242--249},
  year={2017},
  organization={IEEE}
}

@inproceedings{khan2020usc,
  title={Urdu Sentiment Corpus (v1.0): Linguistic Exploration and Visualization of Labeled Datasetfor Urdu Sentiment Analysis.},
  author={Khan, Muhammad Yaseen and Nizami, Muhammad Suffian},
  booktitle={2020 IEEE 2nd International Conference On Information Science & Communication Technology (ICISCT)},
  pages={},
  year={2020},
  organization={IEEE}
}

@InProceedings{maas-EtAl:2011:ACL-HLT2011,
  author    = {Maas, Andrew L.  and  Daly, Raymond E.  and  Pham, Peter T.  and  Huang, Dan  and  Ng, Andrew Y.  and  Potts, Christopher},
  title     = {Learning Word Vectors for Sentiment Analysis},
  booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
  month     = {June},
  year      = {2011},
  address   = {Portland, Oregon, USA},
  publisher = {Association for Computational Linguistics},
  pages     = {142--150},
  url       = {http://www.aclweb.org/anthology/P11-1015}
}
```