Datasets:

Size:
n<1K
ArXiv:
DOI:
License:
DarthReca commited on
Commit
6034380
1 Parent(s): 6b07df6

:lipstick: Better splitting

Browse files
Files changed (1) hide show
  1. california_burned_areas.py +7 -47
california_burned_areas.py CHANGED
@@ -60,19 +60,9 @@ class CaBuArConfig(datasets.BuilderConfig):
60
  keyword arguments forwarded to super.
61
  """
62
 
63
- def __init__(
64
- self,
65
- load_prefire: bool,
66
- train_folds: List[int],
67
- validation_folds: List[int],
68
- test_folds: List[int],
69
- **kwargs
70
- ):
71
  super(CaBuArConfig, self).__init__(**kwargs)
72
  self.load_prefire = load_prefire
73
- self.train_folds = train_folds
74
- self.validation_folds = validation_folds
75
- self.test_folds = test_folds
76
 
77
 
78
  class CaBuAr(datasets.GeneratorBasedBuilder):
@@ -86,18 +76,12 @@ class CaBuAr(datasets.GeneratorBasedBuilder):
86
  version=VERSION,
87
  description="Post-fire only version of the dataset",
88
  load_prefire=False,
89
- train_folds=None,
90
- validation_folds=None,
91
- test_folds=None,
92
  ),
93
  CaBuArConfig(
94
  name="pre-post-fire",
95
  version=VERSION,
96
  description="Pre-fire and post-fire version of the dataset",
97
  load_prefire=True,
98
- train_folds=None,
99
- validation_folds=None,
100
- test_folds=None,
101
  ),
102
  ]
103
 
@@ -136,49 +120,25 @@ class CaBuAr(datasets.GeneratorBasedBuilder):
136
 
137
  def _split_generators(self, dl_manager):
138
  h5_file = dl_manager.download(_URLS)
139
- # Raise ValueError if train_folds, validation_folds or test_folds are not set
140
- if (
141
- self.config.train_folds is None
142
- or self.config.validation_folds is None
143
- or self.config.test_folds is None
144
- ):
145
- raise ValueError("train_folds, validation_folds and test_folds must be set")
146
 
147
  return [
148
  datasets.SplitGenerator(
149
- name=datasets.Split.TRAIN,
150
  # These kwargs will be passed to _generate_examples
151
  gen_kwargs={
152
- "folds": self.config.train_folds,
153
  "load_prefire": self.config.load_prefire,
154
  "filepath": h5_file,
155
  },
156
- ),
157
- datasets.SplitGenerator(
158
- name=datasets.Split.VALIDATION,
159
- # These kwargs will be passed to _generate_examples
160
- gen_kwargs={
161
- "folds": self.config.validation_folds,
162
- "load_prefire": self.config.load_prefire,
163
- "filepath": h5_file,
164
- },
165
- ),
166
- datasets.SplitGenerator(
167
- name=datasets.Split.TEST,
168
- # These kwargs will be passed to _generate_examples
169
- gen_kwargs={
170
- "folds": self.config.test_folds,
171
- "load_prefire": self.config.load_prefire,
172
- "filepath": h5_file,
173
- },
174
- ),
175
  ]
176
 
177
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
178
- def _generate_examples(self, folds: List[int], load_prefire: bool, filepath):
179
  with h5py.File(filepath, "r") as f:
180
  for uuid, values in f.items():
181
- if values.attrs["fold"] not in folds:
182
  continue
183
  if load_prefire and "pre_fire" not in values:
184
  continue
 
60
  keyword arguments forwarded to super.
61
  """
62
 
63
+ def __init__(self, load_prefire: bool, **kwargs):
 
 
 
 
 
 
 
64
  super(CaBuArConfig, self).__init__(**kwargs)
65
  self.load_prefire = load_prefire
 
 
 
66
 
67
 
68
  class CaBuAr(datasets.GeneratorBasedBuilder):
 
76
  version=VERSION,
77
  description="Post-fire only version of the dataset",
78
  load_prefire=False,
 
 
 
79
  ),
80
  CaBuArConfig(
81
  name="pre-post-fire",
82
  version=VERSION,
83
  description="Pre-fire and post-fire version of the dataset",
84
  load_prefire=True,
 
 
 
85
  ),
86
  ]
87
 
 
120
 
121
  def _split_generators(self, dl_manager):
122
  h5_file = dl_manager.download(_URLS)
 
 
 
 
 
 
 
123
 
124
  return [
125
  datasets.SplitGenerator(
126
+ name=fold,
127
  # These kwargs will be passed to _generate_examples
128
  gen_kwargs={
129
+ "fold": fold,
130
  "load_prefire": self.config.load_prefire,
131
  "filepath": h5_file,
132
  },
133
+ )
134
+ for fold in range(0, 5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  ]
136
 
137
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
138
+ def _generate_examples(self, fold: int, load_prefire: bool, filepath):
139
  with h5py.File(filepath, "r") as f:
140
  for uuid, values in f.items():
141
+ if values.attrs["fold"] != fold:
142
  continue
143
  if load_prefire and "pre_fire" not in values:
144
  continue