File size: 8,424 Bytes
bc6ce92 73c7a43 bc6ce92 5f6d4ef bc6ce92 5f6d4ef bc6ce92 73c7a43 5f6d4ef bc6ce92 73c7a43 e8836b8 73c7a43 bc6ce92 73c7a43 bc6ce92 73c7a43 bc6ce92 73c7a43 bc6ce92 73c7a43 bc6ce92 73c7a43 bc6ce92 73c7a43 26fb5d6 bc6ce92 73c7a43 5f6d4ef 73c7a43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
import h5py
import numpy as np
import pandas as pd
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """
@misc{cambrin2024quakeset,
title={QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1},
author={Daniele Rege Cambrin and Paolo Garza},
year={2024},
eprint={2403.18116},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
"""
# You can copy an official description
_DESCRIPTION = """\
QuakeSet is a dataset of earthquake images from the Copernicus Sentinel-1 satellites.
It contains images from before, after an earthquake, and a sample before the "before" sample.
Ground truth contains magnitudes and locations of earthquakes provided by ISC.
"""
_HOMEPAGE = "https://huggingface.co/datasets/DarthReca/quakeset"
_LICENSE = "OPENRAIL"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = ["earthquakes.h5"]
class QuakeSet(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="default",
version=VERSION,
description="Default configuration",
)
]
DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "default":
features = datasets.Features(
{
"sample_key": datasets.Value("string"), # sample_id
"pre_post_image": datasets.Array3D(
shape=(4, 512, 512), dtype="float32"
),
"affected": datasets.ClassLabel(num_classes=2),
"magnitude": datasets.Value("float32"),
"hypocenter": datasets.Sequence(
datasets.Value("float32"), length=3
),
"epsg": datasets.Value("int32"),
"x": datasets.Sequence(datasets.Value("float32"), length=512),
"y": datasets.Sequence(datasets.Value("float32"), length=512),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS
files = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files,
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": files,
"split": "test",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
sample_ids = []
with h5py.File(filepath[0]) as f:
for key, patches in f.items():
attributes = dict(f[key].attrs)
if attributes["split"] != split:
continue
sample_ids += [(f"{key}/{p}", 1, attributes) for p in patches.keys()]
sample_ids += [
(f"{key}/{p}", 0, attributes)
for p, v in patches.items()
if "before" in v
]
for sample_id, label, attributes in sample_ids:
if "x" in sample_id or "y" in sample_id:
continue
pre_key = "pre" if label == 1 else "before"
post_key = "post" if label == 1 else "pre"
pre_sample = f[sample_id][pre_key][...]
post_sample = f[sample_id][post_key][...]
pre_sample = np.nan_to_num(pre_sample, nan=0).transpose(2, 0, 1)
post_sample = np.nan_to_num(post_sample, nan=0).transpose(2, 0, 1)
sample = np.concatenate(
[pre_sample, post_sample], axis=0, dtype=np.float32
)
sample_key = f"{sample_id}/{post_key}"
item = {
"sample_key": sample_key,
"pre_post_image": sample,
"epsg": attributes["epsg"],
}
resource_id, patch_id = sample_id.split("/")
x = f[resource_id]["x"][...]
y = f[resource_id]["y"][...]
x_start = int(patch_id.split("_")[1]) % (x.shape[0] // 512)
y_start = int(patch_id.split("_")[1]) // (x.shape[0] // 512)
x = x[x_start * 512 : (x_start + 1) * 512]
y = y[y_start * 512 : (y_start + 1) * 512]
item |= {
"affected": label,
"magnitude": np.float32(attributes["magnitude"]),
"hypocenter": attributes["hypocenter"],
"x": x.flatten(),
"y": y.flatten(),
}
yield sample_key, item
|