File size: 8,424 Bytes
bc6ce92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c7a43
bc6ce92
 
5f6d4ef
 
 
 
 
 
 
 
 
bc6ce92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f6d4ef
bc6ce92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c7a43
5f6d4ef
bc6ce92
 
 
 
 
73c7a43
 
 
e8836b8
73c7a43
 
 
 
 
 
 
 
 
 
 
 
 
bc6ce92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c7a43
bc6ce92
 
 
 
 
73c7a43
bc6ce92
 
 
 
 
 
 
73c7a43
bc6ce92
 
 
 
 
 
 
73c7a43
bc6ce92
 
 
 
 
 
 
 
 
73c7a43
bc6ce92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c7a43
 
26fb5d6
bc6ce92
 
 
73c7a43
5f6d4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
73c7a43
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os

import datasets
import h5py
import numpy as np
import pandas as pd

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """
@misc{cambrin2024quakeset,
      title={QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1}, 
      author={Daniele Rege Cambrin and Paolo Garza},
      year={2024},
      eprint={2403.18116},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
"""

# You can copy an official description
_DESCRIPTION = """\
QuakeSet is a dataset of earthquake images from the Copernicus Sentinel-1 satellites. 
It contains images from before, after an earthquake, and a sample before the "before" sample.
Ground truth contains magnitudes and locations of earthquakes provided by ISC.
"""

_HOMEPAGE = "https://huggingface.co/datasets/DarthReca/quakeset"

_LICENSE = "OPENRAIL"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = ["earthquakes.h5"]


class QuakeSet(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="default",
            version=VERSION,
            description="Default configuration",
        )
    ]

    DEFAULT_CONFIG_NAME = "default"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        if self.config.name == "default":
            features = datasets.Features(
                {
                    "sample_key": datasets.Value("string"),  # sample_id
                    "pre_post_image": datasets.Array3D(
                        shape=(4, 512, 512), dtype="float32"
                    ),
                    "affected": datasets.ClassLabel(num_classes=2),
                    "magnitude": datasets.Value("float32"),
                    "hypocenter": datasets.Sequence(
                        datasets.Value("float32"), length=3
                    ),
                    "epsg": datasets.Value("int32"),
                    "x": datasets.Sequence(datasets.Value("float32"), length=512),
                    "y": datasets.Sequence(datasets.Value("float32"), length=512),
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS
        files = dl_manager.download(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": files,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": files,
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": files,
                    "split": "test",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        sample_ids = []
        with h5py.File(filepath[0]) as f:
            for key, patches in f.items():
                attributes = dict(f[key].attrs)
                if attributes["split"] != split:
                    continue
                sample_ids += [(f"{key}/{p}", 1, attributes) for p in patches.keys()]
                sample_ids += [
                    (f"{key}/{p}", 0, attributes)
                    for p, v in patches.items()
                    if "before" in v
                ]

            for sample_id, label, attributes in sample_ids:
                if "x" in sample_id or "y" in sample_id:
                    continue

                pre_key = "pre" if label == 1 else "before"
                post_key = "post" if label == 1 else "pre"
                pre_sample = f[sample_id][pre_key][...]
                post_sample = f[sample_id][post_key][...]
                pre_sample = np.nan_to_num(pre_sample, nan=0).transpose(2, 0, 1)
                post_sample = np.nan_to_num(post_sample, nan=0).transpose(2, 0, 1)
                sample = np.concatenate(
                    [pre_sample, post_sample], axis=0, dtype=np.float32
                )
                sample_key = f"{sample_id}/{post_key}"
                item = {
                    "sample_key": sample_key,
                    "pre_post_image": sample,
                    "epsg": attributes["epsg"],
                }

                resource_id, patch_id = sample_id.split("/")
                x = f[resource_id]["x"][...]
                y = f[resource_id]["y"][...]
                x_start = int(patch_id.split("_")[1]) % (x.shape[0] // 512)
                y_start = int(patch_id.split("_")[1]) // (x.shape[0] // 512)
                x = x[x_start * 512 : (x_start + 1) * 512]
                y = y[y_start * 512 : (y_start + 1) * 512]
                item |= {
                    "affected": label,
                    "magnitude": np.float32(attributes["magnitude"]),
                    "hypocenter": attributes["hypocenter"],
                    "x": x.flatten(),
                    "y": y.flatten(),
                }

                yield sample_key, item