Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,33 +1,43 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
splits:
|
13 |
-
- name: eval
|
14 |
-
num_bytes: 396224
|
15 |
-
num_examples: 1954
|
16 |
-
- name: train
|
17 |
-
num_bytes: 2017203
|
18 |
-
num_examples: 10000
|
19 |
-
download_size: 1321087
|
20 |
-
dataset_size: 2413427
|
21 |
-
configs:
|
22 |
-
- config_name: default
|
23 |
-
data_files:
|
24 |
-
- split: eval
|
25 |
-
path: data/eval-*
|
26 |
-
- split: train
|
27 |
-
path: data/train-*
|
28 |
---
|
|
|
29 |
# siqa Dataset
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
## Overview
|
32 |
This repository contains the processed version of the siqa dataset. The dataset is formatted as a collection of multiple-choice questions.
|
33 |
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: mit
|
5 |
+
pretty_name: siqa
|
6 |
+
size_categories:
|
7 |
+
- 10K<n<100K
|
8 |
+
tags:
|
9 |
+
- multiple-choice
|
10 |
+
- benchmark
|
11 |
+
- evaluation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
+
|
14 |
# siqa Dataset
|
15 |
|
16 |
+
## Dataset Information
|
17 |
+
- **Original Hugging Face Dataset**: `lighteval/siqa`
|
18 |
+
- **Subset**: `default`
|
19 |
+
- **Evaluation Split**: `validation`
|
20 |
+
- **Training Split**: `train`
|
21 |
+
- **Task Type**: `multiple_choice`
|
22 |
+
- **Processing Function**: `process_siqa`
|
23 |
+
|
24 |
+
## Processing Function
|
25 |
+
The following function was used to process the dataset from its original source:
|
26 |
+
```python
|
27 |
+
def process_siqa(example: Dict) -> Tuple[str, List[str], int]:
|
28 |
+
"""Process SocialIQA dataset example."""
|
29 |
+
query = f"{example['context']} {example['question']}"
|
30 |
+
|
31 |
+
# Get the original choices
|
32 |
+
original_choices = [example['answerA'], example['answerB'], example['answerC']]
|
33 |
+
correct_answer = original_choices[int(example["label"]) - 1] # Convert 1-based index to 0-based
|
34 |
+
|
35 |
+
# Find the new index of the correct answer after shuffling
|
36 |
+
answer_index = original_choices.index(correct_answer)
|
37 |
+
|
38 |
+
return query, original_choices, answer_index
|
39 |
+
|
40 |
+
```
|
41 |
## Overview
|
42 |
This repository contains the processed version of the siqa dataset. The dataset is formatted as a collection of multiple-choice questions.
|
43 |
|