File size: 3,656 Bytes
99b51ef 98c9bf1 99b51ef fba4518 98c9bf1 99b51ef fba4518 98c9bf1 99b51ef ca6840e 61a6d06 ca6840e de8f30c ca6840e de8f30c ca6840e de8f30c ca6840e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 715028
num_examples: 10003
- name: test
num_bytes: 204010
num_examples: 3080
download_size: 378619
dataset_size: 919038
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regexp_full_match
sequence: 'null'
- name: regexp_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 3420
num_examples: 77
download_size: 4651
dataset_size: 3420
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
---
# banking77
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).
## Usage
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
```python
from autointent import Dataset
banking77 = Dataset.from_hub("AutoIntent/banking77")
```
## Source
This dataset is taken from `PolyAI/banking77` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
```python
"""Convert events dataset to autointent internal format and scheme."""
import json
import requests
from datasets import Dataset as HFDataset
from datasets import load_dataset
from autointent import Dataset
from autointent.schemas import Intent, Sample
def get_intents_data(github_file: str | None = None) -> list[Intent]:
"""Load specific json from HF repo."""
github_file = github_file or "https://huggingface.co/datasets/PolyAI/banking77/resolve/main/dataset_infos.json"
raw_text = requests.get(github_file, timeout=5).text
dataset_description = json.loads(raw_text)
intent_names = dataset_description["default"]["features"]["label"]["names"]
return [Intent(id=i, name=name) for i, name in enumerate(intent_names)]
def convert_banking77(
banking77_split: HFDataset, intents_data: list[Intent], shots_per_intent: int | None = None
) -> list[Sample]:
"""Convert one split into desired format."""
all_labels = sorted(banking77_split.unique("label"))
n_classes = len(intents_data)
if all_labels != list(range(n_classes)):
msg = "Something's wrong"
raise ValueError(msg)
classwise_samples = [[] for _ in range(n_classes)]
for sample in banking77_split:
target_list = classwise_samples[sample["label"]]
if shots_per_intent is not None and len(target_list) >= shots_per_intent:
continue
target_list.append(Sample(utterance=sample["text"], label=sample["label"]))
samples = [sample for samples_from_one_class in classwise_samples for sample in samples_from_one_class]
print(f"{len(samples)=}")
return samples
if __name__ == "__main__":
intents_data = get_intents_data()
banking77 = load_dataset("PolyAI/banking77", trust_remote_code=True)
train_samples = convert_banking77(banking77["train"], intents_data=intents_data)
test_samples = convert_banking77(banking77["test"], intents_data=intents_data)
banking77_converted = Dataset.from_dict(
{"train": train_samples, "test": test_samples, "intents": intents_data}
)
```
|