--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 406785 num_examples: 8954 - name: test num_bytes: 49545 num_examples: 1076 download_size: 199496 dataset_size: 456330 - config_name: intents features: - name: id dtype: int64 - name: name dtype: string - name: tags sequence: 'null' - name: regexp_full_match sequence: 'null' - name: regexp_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 2422 num_examples: 64 download_size: 4037 dataset_size: 2422 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: intents data_files: - split: intents path: intents/intents-* task_categories: - text-classification language: - en --- # hwu64 This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset hwu64 = Dataset.from_hub("AutoIntent/hwu64") ``` ## Source This dataset is taken from original work's github repository `jianguoz/Few-Shot-Intent-Detection` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python # define utils import requests from autointent import Dataset def load_text_from_url(github_file: str): return requests.get(github_file).text def convert_hwu64(hwu_utterances, hwu_labels): intent_names = sorted(set(hwu_labels)) name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False)) n_classes = len(intent_names) assert len(hwu_utterances) == len(hwu_labels) classwise_utterance_records = [[] for _ in range(n_classes)] intents = [ { "id": i, "name": name, } for i, name in enumerate(intent_names) ] for txt, name in zip(hwu_utterances, hwu_labels, strict=False): intent_id = name_to_id[name] target_list = classwise_utterance_records[intent_id] target_list.append({"utterance": txt, "label": intent_id}) utterances = [rec for lst in classwise_utterance_records for rec in lst] return {"intents": intents, split: utterances} # load file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/train/label" labels = load_text_from_url(file_url).split("\n")[:-1] file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/train/seq.in" utterances = load_text_from_url(file_url).split("\n")[:-1] # convert hwu64_train = convert_hwu64(utterances, labels, "train") file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/test/label" labels = load_text_from_url(file_url).split("\n")[:-1] file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/test/seq.in" utterances = load_text_from_url(file_url).split("\n")[:-1] # convert hwu64_test = convert_hwu64(utterances, labels, "test") hwu64_train["test"] = hwu64_test["test"] dataset = Dataset.from_dict(hwu64_train) ```