|
import os |
|
import re |
|
import ast |
|
import json |
|
import random |
|
from pathlib import Path |
|
from itertools import product |
|
from dataclasses import dataclass |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
_CITATION = """\ |
|
@inproceedings{grouin-etal-2021-classification, |
|
title = "Classification de cas cliniques et {\'e}valuation automatique de r{\'e}ponses d{'}{\'e}tudiants : pr{\'e}sentation de la campagne {DEFT} 2021 (Clinical cases classification and automatic evaluation of student answers : Presentation of the {DEFT} 2021 Challenge)", |
|
author = "Grouin, Cyril and |
|
Grabar, Natalia and |
|
Illouz, Gabriel", |
|
booktitle = "Actes de la 28e Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles. Atelier D{\'E}fi Fouille de Textes (DEFT)", |
|
month = "6", |
|
year = "2021", |
|
address = "Lille, France", |
|
publisher = "ATALA", |
|
url = "https://aclanthology.org/2021.jeptalnrecital-deft.1", |
|
pages = "1--13", |
|
abstract = "Le d{\'e}fi fouille de textes (DEFT) est une campagne d{'}{\'e}valuation annuelle francophone. Nous pr{\'e}sentons les corpus et baselines {\'e}labor{\'e}es pour trois t{\^a}ches : (i) identifier le profil clinique de patients d{\'e}crits dans des cas cliniques, (ii) {\'e}valuer automatiquement les r{\'e}ponses d{'}{\'e}tudiants sur des questionnaires en ligne (Moodle) {\`a} partir de la correction de l{'}enseignant, et (iii) poursuivre une {\'e}valuation de r{\'e}ponses d{'}{\'e}tudiants {\`a} partir de r{\'e}ponses d{\'e}j{\`a} {\'e}valu{\'e}es par l{'}enseignant. Les r{\'e}sultats varient de 0,394 {\`a} 0,814 de F-mesure sur la premi{\`e}re t{\^a}che (7 {\'e}quipes), de 0,448 {\`a} 0,682 de pr{\'e}cision sur la deuxi{\`e}me (3 {\'e}quipes), et de 0,133 {\`a} 0,510 de pr{\'e}cision sur la derni{\`e}re (3 {\'e}quipes).", |
|
language = "French", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ddd |
|
""" |
|
|
|
_HOMEPAGE = "ddd" |
|
|
|
_LICENSE = "unknown" |
|
|
|
_SPECIALITIES = ['immunitaire', 'endocriniennes', 'blessures', 'chimiques', 'etatsosy', 'nutritionnelles', 'infections', 'virales', 'parasitaires', 'tumeur', 'osteomusculaires', 'stomatognathique', 'digestif', 'respiratoire', 'ORL', 'nerveux', 'oeil', 'homme', 'femme', 'cardiovasculaires', 'hemopathies', 'genetique', 'peau'] |
|
|
|
_LABELS_BASE = ['anatomie', 'date', 'dose', 'duree', 'examen', 'frequence', 'mode', 'moment', 'pathologie', 'sosy', 'substance', 'traitement', 'valeur'] |
|
|
|
class DEFT2021(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG_NAME = "ner" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="cls", version="1.0.0", description="DEFT 2021 corpora - Classification task"), |
|
datasets.BuilderConfig(name="ner", version="1.0.0", description="DEFT 2021 corpora - Named-entity recognition task"), |
|
] |
|
|
|
def _info(self): |
|
|
|
if self.config.name.find("cls") != -1: |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"specialities": datasets.Sequence( |
|
datasets.features.ClassLabel(names=_SPECIALITIES), |
|
), |
|
"specialities_one_hot": datasets.Sequence( |
|
datasets.Value("float"), |
|
), |
|
} |
|
) |
|
|
|
elif self.config.name.find("ner") != -1: |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names = ['O', 'B-anatomie', 'I-anatomie', 'B-date', 'I-date', 'B-dose', 'I-dose', 'B-duree', 'I-duree', 'B-examen', 'I-examen', 'B-frequence', 'I-frequence', 'B-mode', 'I-mode', 'B-moment', 'I-moment', 'B-pathologie', 'I-pathologie', 'B-sosy', 'I-sosy', 'B-substance', 'I-substance', 'B-traitement', 'I-traitement', 'B-valeur', 'I-valeur'], |
|
) |
|
), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") |
|
|
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def remove_prefix(self, a: str, prefix: str) -> str: |
|
if a.startswith(prefix): |
|
a = a[len(prefix) :] |
|
return a |
|
|
|
def parse_brat_file(self, txt_file: Path, annotation_file_suffixes: List[str] = None, parse_notes: bool = False) -> Dict: |
|
|
|
example = {} |
|
example["document_id"] = txt_file.with_suffix("").name |
|
with txt_file.open() as f: |
|
example["text"] = f.read() |
|
|
|
|
|
|
|
if annotation_file_suffixes is None: |
|
annotation_file_suffixes = [".a1", ".a2", ".ann"] |
|
|
|
if len(annotation_file_suffixes) == 0: |
|
raise AssertionError( |
|
"At least one suffix for the to-be-read annotation files should be given!" |
|
) |
|
|
|
ann_lines = [] |
|
for suffix in annotation_file_suffixes: |
|
annotation_file = txt_file.with_suffix(suffix) |
|
if annotation_file.exists(): |
|
with annotation_file.open() as f: |
|
ann_lines.extend(f.readlines()) |
|
|
|
example["text_bound_annotations"] = [] |
|
example["events"] = [] |
|
example["relations"] = [] |
|
example["equivalences"] = [] |
|
example["attributes"] = [] |
|
example["normalizations"] = [] |
|
|
|
if parse_notes: |
|
example["notes"] = [] |
|
|
|
for line in ann_lines: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
|
|
if line.startswith("T"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["type"] = fields[1].split()[0] |
|
ann["offsets"] = [] |
|
span_str = self.remove_prefix(fields[1], (ann["type"] + " ")) |
|
text = fields[2] |
|
for span in span_str.split(";"): |
|
start, end = span.split() |
|
ann["offsets"].append([int(start), int(end)]) |
|
|
|
|
|
ann["text"] = [] |
|
if len(ann["offsets"]) > 1: |
|
i = 0 |
|
for start, end in ann["offsets"]: |
|
chunk_len = end - start |
|
ann["text"].append(text[i : chunk_len + i]) |
|
i += chunk_len |
|
while i < len(text) and text[i] == " ": |
|
i += 1 |
|
else: |
|
ann["text"] = [text] |
|
|
|
example["text_bound_annotations"].append(ann) |
|
|
|
elif line.startswith("E"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
|
|
ann["type"], ann["trigger"] = fields[1].split()[0].split(":") |
|
|
|
ann["arguments"] = [] |
|
for role_ref_id in fields[1].split()[1:]: |
|
argument = { |
|
"role": (role_ref_id.split(":"))[0], |
|
"ref_id": (role_ref_id.split(":"))[1], |
|
} |
|
ann["arguments"].append(argument) |
|
|
|
example["events"].append(ann) |
|
|
|
elif line.startswith("R"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["type"] = fields[1].split()[0] |
|
|
|
ann["head"] = { |
|
"role": fields[1].split()[1].split(":")[0], |
|
"ref_id": fields[1].split()[1].split(":")[1], |
|
} |
|
ann["tail"] = { |
|
"role": fields[1].split()[2].split(":")[0], |
|
"ref_id": fields[1].split()[2].split(":")[1], |
|
} |
|
|
|
example["relations"].append(ann) |
|
|
|
|
|
|
|
|
|
|
|
elif line.startswith("*"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["ref_ids"] = fields[1].split()[1:] |
|
|
|
example["equivalences"].append(ann) |
|
|
|
elif line.startswith("A") or line.startswith("M"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
|
|
info = fields[1].split() |
|
ann["type"] = info[0] |
|
ann["ref_id"] = info[1] |
|
|
|
if len(info) > 2: |
|
ann["value"] = info[2] |
|
else: |
|
ann["value"] = "" |
|
|
|
example["attributes"].append(ann) |
|
|
|
elif line.startswith("N"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["text"] = fields[2] |
|
|
|
info = fields[1].split() |
|
|
|
ann["type"] = info[0] |
|
ann["ref_id"] = info[1] |
|
ann["resource_name"] = info[2].split(":")[0] |
|
ann["cuid"] = info[2].split(":")[1] |
|
example["normalizations"].append(ann) |
|
|
|
elif parse_notes and line.startswith("#"): |
|
ann = {} |
|
fields = line.split("\t") |
|
|
|
ann["id"] = fields[0] |
|
ann["text"] = fields[2] if len(fields) == 3 else "<BB_NULL_STR>" |
|
|
|
info = fields[1].split() |
|
|
|
ann["type"] = info[0] |
|
ann["ref_id"] = info[1] |
|
example["notes"].append(ann) |
|
return example |
|
|
|
def _to_source_example(self, brat_example: Dict) -> Dict: |
|
|
|
source_example = { |
|
"document_id": brat_example["document_id"], |
|
"text": brat_example["text"], |
|
} |
|
|
|
source_example["entities"] = [] |
|
|
|
for entity_annotation in brat_example["text_bound_annotations"]: |
|
entity_ann = entity_annotation.copy() |
|
|
|
|
|
entity_ann["entity_id"] = entity_ann["id"] |
|
entity_ann.pop("id") |
|
|
|
|
|
source_example["entities"].append(entity_ann) |
|
|
|
return source_example |
|
|
|
def convert_to_prodigy(self, json_object, list_label): |
|
|
|
def prepare_split(text): |
|
|
|
rep_before = ['?', '!', ';', '*'] |
|
rep_after = ['’', "'"] |
|
rep_both = ['-', '/', '[', ']', ':', ')', '(', ',', '.'] |
|
|
|
for i in rep_before: |
|
text = text.replace(i, ' '+i) |
|
|
|
for i in rep_after: |
|
text = text.replace(i, i+' ') |
|
|
|
for i in rep_both: |
|
text = text.replace(i, ' '+i+' ') |
|
|
|
text_split = text.split() |
|
|
|
punctuations = [',', '.'] |
|
for j in range(0, len(text_split)-1): |
|
if j-1 >= 0 and j+1 <= len(text_split)-1 and text_split[j-1][-1].isdigit() and text_split[j+1][0].isdigit(): |
|
if text_split[j] in punctuations: |
|
text_split[j-1:j+2] = [''.join(text_split[j-1:j+2])] |
|
|
|
text = ' '.join(text_split) |
|
|
|
return text |
|
|
|
new_json = [] |
|
|
|
for ex in [json_object]: |
|
|
|
text = prepare_split(ex['text']) |
|
|
|
tokenized_text = text.split() |
|
|
|
list_spans = [] |
|
|
|
for a in ex['entities']: |
|
|
|
for o in range(len(a['offsets'])): |
|
|
|
text_annot = prepare_split(a['text'][o]) |
|
|
|
offset_start = a['offsets'][o][0] |
|
offset_end = a['offsets'][o][1] |
|
|
|
nb_tokens_annot = len(text_annot.split()) |
|
|
|
txt_offsetstart = prepare_split(ex['text'][:offset_start]) |
|
|
|
nb_tokens_before_annot = len(txt_offsetstart.split()) |
|
|
|
token_start = nb_tokens_before_annot |
|
token_end = token_start + nb_tokens_annot - 1 |
|
|
|
if a['type'] in list_label: |
|
list_spans.append({ |
|
'start': offset_start, |
|
'end': offset_end, |
|
'token_start': token_start, |
|
'token_end': token_end, |
|
'label': a['type'], |
|
'id': a['entity_id'], |
|
'text': a['text'][o], |
|
}) |
|
|
|
res = { |
|
'id': ex['document_id'], |
|
'document_id': ex['document_id'], |
|
'text': ex['text'], |
|
'tokens': tokenized_text, |
|
'spans': list_spans |
|
} |
|
|
|
new_json.append(res) |
|
|
|
return new_json |
|
|
|
def convert_to_hf_format(self, json_object): |
|
|
|
dict_out = [] |
|
|
|
for i in json_object: |
|
|
|
|
|
selected_annotations = [] |
|
|
|
if 'spans' in i: |
|
|
|
for idx_j, j in enumerate(i['spans']): |
|
|
|
len_j = int(j['end'])-int(j['start']) |
|
range_j = [l for l in range(int(j['start']),int(j['end']),1)] |
|
|
|
keep = True |
|
|
|
for idx_k, k in enumerate(i['spans'][idx_j+1:]): |
|
|
|
len_k = int(k['end'])-int(k['start']) |
|
range_k = [l for l in range(int(k['start']),int(k['end']),1)] |
|
|
|
inter = list(set(range_k).intersection(set(range_j))) |
|
if len(inter) > 0 and len_j < len_k: |
|
keep = False |
|
|
|
if keep: |
|
selected_annotations.append(j) |
|
|
|
|
|
nb_tokens = len(i['tokens']) |
|
ner_tags = ['O']*nb_tokens |
|
|
|
for slct in selected_annotations: |
|
|
|
for x in range(slct['token_start'], slct['token_end']+1, 1): |
|
|
|
if i['tokens'][x] not in slct['text']: |
|
if ner_tags[x-1] == 'O': |
|
ner_tags[x-1] = slct['label']+'-'+slct['id'] |
|
else: |
|
if ner_tags[x] == 'O': |
|
ner_tags[x] = slct['label']+'-'+slct['id'] |
|
|
|
|
|
ner_tags_IOB2 = [] |
|
for idx_l, label in enumerate(ner_tags): |
|
|
|
if label == 'O': |
|
ner_tags_IOB2.append('O') |
|
else: |
|
current_label = label.split('-')[0] |
|
current_id = label.split('-')[1] |
|
if idx_l == 0: |
|
ner_tags_IOB2.append('B-'+current_label) |
|
elif current_label in ner_tags[idx_l-1]: |
|
if current_id == ner_tags[idx_l-1].split('-')[1]: |
|
ner_tags_IOB2.append('I-'+current_label) |
|
else: |
|
ner_tags_IOB2.append('B-'+current_label) |
|
else: |
|
ner_tags_IOB2.append('B-'+current_label) |
|
|
|
dict_out.append({ |
|
'id': i['id'], |
|
'document_id': i['document_id'], |
|
"ner_tags": ner_tags_IOB2, |
|
"tokens": i['tokens'], |
|
}) |
|
|
|
return dict_out |
|
|
|
|
|
def split_sentences(self, json_o): |
|
""" |
|
Split each document in sentences to fit the 512 maximum tokens of BERT. |
|
|
|
""" |
|
|
|
final_json = [] |
|
|
|
for i in json_o: |
|
|
|
ind_punc = [index for index, value in enumerate(i['tokens']) if value=='.'] + [len(i['tokens'])] |
|
|
|
for index, value in enumerate(ind_punc): |
|
|
|
if index==0: |
|
final_json.append({'id': i['id']+'_'+str(index), |
|
'document_id': i['document_id'], |
|
'ner_tags': i['ner_tags'][:value+1], |
|
'tokens': i['tokens'][:value+1] |
|
}) |
|
else: |
|
prev_value = ind_punc[index-1] |
|
final_json.append({'id': i['id']+'_'+str(index), |
|
'document_id': i['document_id'], |
|
'ner_tags': i['ner_tags'][prev_value+1:value+1], |
|
'tokens': i['tokens'][prev_value+1:value+1] |
|
}) |
|
|
|
return final_json |
|
|
|
def _generate_examples(self, data_dir, split): |
|
|
|
if self.config.name.find("cls") != -1: |
|
|
|
all_res = {} |
|
|
|
key = 0 |
|
|
|
if split == 'train' or split == 'validation': |
|
split_eval = 'train' |
|
else: |
|
split_eval = 'test' |
|
|
|
path_labels = Path(data_dir) / 'evaluations' / f"ref-{split_eval}-deft2021.txt" |
|
|
|
with open(os.path.join(data_dir, 'distribution-corpus.txt')) as f_dist: |
|
|
|
doc_specialities_ = {} |
|
|
|
with open(path_labels) as f_spec: |
|
|
|
doc_specialities = [line.strip() for line in f_spec.readlines()] |
|
|
|
for raw in doc_specialities: |
|
|
|
raw_split = raw.split('\t') |
|
|
|
if len(raw_split) == 3 and raw_split[0] in doc_specialities_: |
|
doc_specialities_[raw_split[0]].append(raw_split[1]) |
|
|
|
elif len(raw_split) == 3 and raw_split[0] not in doc_specialities_: |
|
doc_specialities_[raw_split[0]] = [raw_split[1]] |
|
|
|
ann_path = Path(data_dir) / "DEFT-cas-cliniques" |
|
|
|
for guid, txt_file in enumerate(sorted(ann_path.glob("*.txt"))): |
|
|
|
ann_file = txt_file.with_suffix("").name.split('.')[0]+'.ann' |
|
|
|
if ann_file in doc_specialities_: |
|
|
|
res = {} |
|
res['document_id'] = txt_file.with_suffix("").name |
|
with txt_file.open() as f: |
|
res["text"] = f.read() |
|
|
|
specialities = doc_specialities_[ann_file] |
|
|
|
|
|
one_hot = [0.0 for i in _SPECIALITIES] |
|
|
|
|
|
for s in specialities: |
|
one_hot[_SPECIALITIES.index(s)] = 1.0 |
|
|
|
all_res[res['document_id']] = { |
|
"id": str(key), |
|
"document_id": res['document_id'], |
|
"text": res["text"], |
|
"specialities": specialities, |
|
"specialities_one_hot": one_hot, |
|
} |
|
|
|
key += 1 |
|
|
|
distribution = [line.strip() for line in f_dist.readlines()] |
|
|
|
random.seed(4) |
|
train = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'train 2021'] |
|
random.shuffle(train) |
|
random.shuffle(train) |
|
random.shuffle(train) |
|
train, validation = np.split(train, [int(len(train)*0.7096)]) |
|
|
|
test = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'test 2021'] |
|
|
|
if split == "train": |
|
allowed_ids = list(train) |
|
elif split == "test": |
|
allowed_ids = list(test) |
|
elif split == "validation": |
|
allowed_ids = list(validation) |
|
|
|
for r in all_res.values(): |
|
if r["document_id"]+'.txt' in allowed_ids: |
|
yield r["id"], r |
|
|
|
elif self.config.name.find("ner") != -1: |
|
|
|
all_res = [] |
|
|
|
key = 0 |
|
|
|
with open(os.path.join(data_dir, 'distribution-corpus.txt')) as f_dist: |
|
|
|
distribution = [line.strip() for line in f_dist.readlines()] |
|
|
|
random.seed(4) |
|
train = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'train 2021'] |
|
random.shuffle(train) |
|
random.shuffle(train) |
|
random.shuffle(train) |
|
train, validation = np.split(train, [int(len(train)*0.73)]) |
|
test = [raw.split('\t')[0] for raw in distribution if len(raw.split('\t')) == 4 and raw.split('\t')[3] == 'test 2021'] |
|
|
|
ann_path = Path(data_dir) / "DEFT-cas-cliniques" |
|
|
|
for guid, txt_file in enumerate(sorted(ann_path.glob("*.txt"))): |
|
|
|
brat_example = self.parse_brat_file(txt_file, parse_notes=True) |
|
|
|
source_example = self._to_source_example(brat_example) |
|
|
|
prod_format = self.convert_to_prodigy(source_example, _LABELS_BASE) |
|
|
|
hf_format = self.convert_to_hf_format(prod_format) |
|
|
|
hf_split = self.split_sentences(hf_format) |
|
|
|
for h in hf_split: |
|
|
|
if len(h['tokens']) > 0 and len(h['ner_tags']) > 0: |
|
|
|
all_res.append({ |
|
"id": str(key), |
|
"document_id": h['document_id'], |
|
"tokens": h['tokens'], |
|
"ner_tags": h['ner_tags'], |
|
}) |
|
|
|
key += 1 |
|
|
|
if split == "train": |
|
allowed_ids = list(train) |
|
elif split == "validation": |
|
allowed_ids = list(validation) |
|
elif split == "test": |
|
allowed_ids = list(test) |
|
|
|
for r in all_res: |
|
if r["document_id"]+'.txt' in allowed_ids: |
|
yield r["id"], r |
|
|