File size: 5,464 Bytes
3776b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4308cf3
 
 
 
 
 
 
 
 
 
 
3776b81
 
 
 
 
 
5d7b004
 
3776b81
 
 
 
 
 
 
 
 
 
 
 
 
 
480304a
3776b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05222b3
5d7b004
3776b81
 
 
 
05222b3
2079e1a
3776b81
 
 
 
 
05222b3
2079e1a
3776b81
 
 
 
 
05222b3
2079e1a
3776b81
 
 
 
2079e1a
3776b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2079e1a
3776b81
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FrenchMedMCQA : A French Multiple-Choice Question Answering Corpus for Medical domain"""

import os
import json

import datasets

_DESCRIPTION = """\
This paper introduces FrenchMedMCQA, the first publicly available Multiple-Choice \
Question Answering (MCQA) dataset in French for medical domain. It is composed of  \
3,105 questions taken from real exams of the French medical specialization diploma \
in pharmacy, mixing single and multiple answers. Each instance of the dataset contains \
an identifier, a question, five possible answers and their manual correction(s).  \
We also propose first baseline models to automatically process this MCQA task in  \
order to report on the current performances and to highlight the difficulty of the  \
task. A detailed analysis of the results showed that it is necessary to have  \
representations adapted to the medical domain or to the MCQA task: in our case,  \
English specialized models yielded better results than generic French ones, even though  \
FrenchMedMCQA is in French. Corpus, models and tools are available online.
"""

_HOMEPAGE = "https://frenchmedmcqa.github.io"

_LICENSE = "Apache License 2.0"

_URL = "https://huggingface.co/datasets/Dr-BERT/FrenchMedMCQA/resolve/main/data.zip"

_CITATION = """\
@unpublished{labrak:hal-03824241,
  TITLE = {{FrenchMedMCQA: A French Multiple-Choice Question Answering Dataset for Medical domain}},
  AUTHOR = {Labrak, Yanis and Bazoge, Adrien and Dufour, Richard and Daille, Béatrice and Gourraud, Pierre-Antoine and Morin, Emmanuel and Rouvier, Mickael},
  URL = {https://hal.archives-ouvertes.fr/hal-03824241},
  NOTE = {working paper or preprint},
  YEAR = {2022},
  MONTH = Oct,
  PDF = {https://hal.archives-ouvertes.fr/hal-03824241/file/LOUHI_2022___QA-3.pdf},
  HAL_ID = {hal-03824241},
  HAL_VERSION = {v1},
}
"""

class FrenchMedMCQA(datasets.GeneratorBasedBuilder):
    """FrenchMedMCQA : A French Multi-Choice Question Answering Corpus for Medical domain"""

    VERSION = datasets.Version("1.0.0")

    def _info(self):

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "question": datasets.Value("string"),
                "answer_a": datasets.Value("string"),
                "answer_b": datasets.Value("string"),
                "answer_c": datasets.Value("string"),
                "answer_d": datasets.Value("string"),
                "answer_e": datasets.Value("string"),
                "correct_answers": datasets.Sequence(
                    datasets.features.ClassLabel(names=["a", "b", "c", "d", "e"]),
                ),
                "type": datasets.Value("string"),
                "subject_name": datasets.Value("string"),
                "number_correct_answers": datasets.features.ClassLabel(names=["1","2","3","4","5"]),
            }
        )
        
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        data_dir = dl_manager.download_and_extract(_URL).rstrip("/")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir + "/train.json",
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir + "/dev.json",
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir + "/test.json",
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):

        with open(filepath, encoding="utf-8") as f:

            data = json.load(f)

            for key, d in enumerate(data):

                yield key, {
                    "id": d["id"],
                    "question": d["question"],
                    "answer_a": d["answers"]["a"],
                    "answer_b": d["answers"]["b"],
                    "answer_c": d["answers"]["c"],
                    "answer_d": d["answers"]["d"],
                    "answer_e": d["answers"]["e"],
                    "correct_answers": d["correct_answers"],
                    "number_correct_answers": str(len(d["correct_answers"])),
                    "type": d["type"] if split != "test" else "unknown",
                    "subject_name": d["subject_name"],
                }