Upload 2 files
Browse files- MantraGSC.py +411 -0
- test_mantra_gsc.py +8 -0
MantraGSC.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import ast
|
17 |
+
from pathlib import Path
|
18 |
+
from itertools import product
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Dict, List, Tuple
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@article{10.1093/jamia/ocv037,
|
26 |
+
author = {Kors, Jan A and Clematide, Simon and Akhondi,
|
27 |
+
Saber A and van Mulligen, Erik M and Rebholz-Schuhmann, Dietrich},
|
28 |
+
title = "{A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC}",
|
29 |
+
journal = {Journal of the American Medical Informatics Association},
|
30 |
+
volume = {22},
|
31 |
+
number = {5},
|
32 |
+
pages = {948-956},
|
33 |
+
year = {2015},
|
34 |
+
month = {05},
|
35 |
+
abstract = "{Objective To create a multilingual gold-standard corpus for biomedical concept recognition.Materials
|
36 |
+
and methods We selected text units from different parallel corpora (Medline abstract titles, drug labels,
|
37 |
+
biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language
|
38 |
+
independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and
|
39 |
+
covering a wide range of semantic groups. To reduce the annotation workload, automatically generated
|
40 |
+
preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and
|
41 |
+
cross-language consistency checks were carried out to arrive at the final annotations.Results The number of final
|
42 |
+
annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are
|
43 |
+
similar to those between individual annotators and the gold standard. The automatically generated harmonized
|
44 |
+
annotation set for each language performed equally well as the best annotator for that language.Discussion The use
|
45 |
+
of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation
|
46 |
+
efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance
|
47 |
+
of automatic annotation techniques.Conclusion To our knowledge, this is the first gold-standard corpus for
|
48 |
+
biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety
|
49 |
+
of semantic groups that are being covered, and the diversity of text genres that were annotated.}",
|
50 |
+
issn = {1067-5027},
|
51 |
+
doi = {10.1093/jamia/ocv037},
|
52 |
+
url = {https://doi.org/10.1093/jamia/ocv037},
|
53 |
+
eprint = {https://academic.oup.com/jamia/article-pdf/22/5/948/34146393/ocv037.pdf},
|
54 |
+
}
|
55 |
+
"""
|
56 |
+
|
57 |
+
_DESCRIPTION = """\
|
58 |
+
We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims)
|
59 |
+
in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical
|
60 |
+
concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups.
|
61 |
+
"""
|
62 |
+
|
63 |
+
_HOMEPAGE = "https://biosemantics.erasmusmc.nl/index.php/resources/mantra-gsc"
|
64 |
+
|
65 |
+
_LICENSE = "CC_BY_4p0"
|
66 |
+
|
67 |
+
_URL = "http://biosemantics.org/MantraGSC/Mantra-GSC.zip"
|
68 |
+
|
69 |
+
_LANGUAGES_2 = {
|
70 |
+
"es": "Spanish",
|
71 |
+
"fr": "French",
|
72 |
+
"de": "German",
|
73 |
+
"nl": "Dutch",
|
74 |
+
"en": "English",
|
75 |
+
}
|
76 |
+
|
77 |
+
_DATASET_TYPES = {
|
78 |
+
"emea": "EMEA",
|
79 |
+
"medline": "Medline",
|
80 |
+
"patents": "Patents",
|
81 |
+
}
|
82 |
+
|
83 |
+
@dataclass
|
84 |
+
class DrBenchmarkConfig(datasets.BuilderConfig):
|
85 |
+
name: str = None
|
86 |
+
version: datasets.Version = None
|
87 |
+
description: str = None
|
88 |
+
schema: str = None
|
89 |
+
subset_id: str = None
|
90 |
+
|
91 |
+
class MantraGSC(datasets.GeneratorBasedBuilder):
|
92 |
+
|
93 |
+
SOURCE_VERSION = datasets.Version("1.0.0")
|
94 |
+
|
95 |
+
BUILDER_CONFIGS = []
|
96 |
+
|
97 |
+
for language, dataset_type in product(_LANGUAGES_2, _DATASET_TYPES):
|
98 |
+
|
99 |
+
if dataset_type == "patents" and language in ["nl", "es"]:
|
100 |
+
continue
|
101 |
+
|
102 |
+
BUILDER_CONFIGS.append(
|
103 |
+
DrBenchmarkConfig(
|
104 |
+
name=f"{language}_{dataset_type}",
|
105 |
+
version=SOURCE_VERSION,
|
106 |
+
description=f"Mantra GSC {_LANGUAGES_2[language]} {_DATASET_TYPES[dataset_type]} source schema",
|
107 |
+
schema="source",
|
108 |
+
subset_id=f"{language}_{_DATASET_TYPES[dataset_type]}",
|
109 |
+
)
|
110 |
+
)
|
111 |
+
|
112 |
+
DEFAULT_CONFIG_NAME = "fr_medline"
|
113 |
+
|
114 |
+
def _info(self) -> datasets.DatasetInfo:
|
115 |
+
|
116 |
+
if self.config.schema == "source":
|
117 |
+
features = datasets.Features(
|
118 |
+
{
|
119 |
+
"document_id": datasets.Value("string"),
|
120 |
+
"text": datasets.Value("string"),
|
121 |
+
"entities": [
|
122 |
+
{
|
123 |
+
"entity_id": datasets.Value("string"),
|
124 |
+
"type": datasets.Value("string"),
|
125 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
126 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
127 |
+
"cui": datasets.Value("string"),
|
128 |
+
"preferred_term": datasets.Value("string"),
|
129 |
+
"semantic_type": datasets.Value("string"),
|
130 |
+
"normalized": [
|
131 |
+
{
|
132 |
+
"db_name": datasets.Value("string"),
|
133 |
+
"db_id": datasets.Value("string"),
|
134 |
+
}
|
135 |
+
],
|
136 |
+
}
|
137 |
+
],
|
138 |
+
}
|
139 |
+
)
|
140 |
+
|
141 |
+
return datasets.DatasetInfo(
|
142 |
+
description=_DESCRIPTION,
|
143 |
+
features=features,
|
144 |
+
homepage=_HOMEPAGE,
|
145 |
+
license=str(_LICENSE),
|
146 |
+
citation=_CITATION,
|
147 |
+
)
|
148 |
+
|
149 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
150 |
+
|
151 |
+
print("1 - " + "*"*50)
|
152 |
+
print(_URL)
|
153 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
154 |
+
|
155 |
+
print("2 - " + "*"*50)
|
156 |
+
data_dir = Path(data_dir) / "Mantra-GSC"
|
157 |
+
|
158 |
+
print("3 - " + "*"*50)
|
159 |
+
language, dataset_type = self.config.name.split("_")
|
160 |
+
|
161 |
+
print("4 - " + "*"*50)
|
162 |
+
return [
|
163 |
+
datasets.SplitGenerator(
|
164 |
+
name=datasets.Split.TRAIN,
|
165 |
+
gen_kwargs={
|
166 |
+
"data_dir": data_dir,
|
167 |
+
"language": language,
|
168 |
+
"dataset_type": dataset_type,
|
169 |
+
},
|
170 |
+
),
|
171 |
+
]
|
172 |
+
|
173 |
+
def remove_prefix(self, a: str, prefix: str) -> str:
|
174 |
+
if a.startswith(prefix):
|
175 |
+
a = a[len(prefix) :]
|
176 |
+
return a
|
177 |
+
|
178 |
+
def parse_brat_file(self, txt_file: Path, annotation_file_suffixes: List[str] = None, parse_notes: bool = False) -> Dict:
|
179 |
+
|
180 |
+
example = {}
|
181 |
+
example["document_id"] = txt_file.with_suffix("").name
|
182 |
+
with txt_file.open() as f:
|
183 |
+
example["text"] = f.read()
|
184 |
+
|
185 |
+
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
186 |
+
# for event extraction
|
187 |
+
if annotation_file_suffixes is None:
|
188 |
+
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
189 |
+
|
190 |
+
if len(annotation_file_suffixes) == 0:
|
191 |
+
raise AssertionError(
|
192 |
+
"At least one suffix for the to-be-read annotation files should be given!"
|
193 |
+
)
|
194 |
+
|
195 |
+
ann_lines = []
|
196 |
+
for suffix in annotation_file_suffixes:
|
197 |
+
annotation_file = txt_file.with_suffix(suffix)
|
198 |
+
if annotation_file.exists():
|
199 |
+
with annotation_file.open() as f:
|
200 |
+
ann_lines.extend(f.readlines())
|
201 |
+
|
202 |
+
example["text_bound_annotations"] = []
|
203 |
+
example["events"] = []
|
204 |
+
example["relations"] = []
|
205 |
+
example["equivalences"] = []
|
206 |
+
example["attributes"] = []
|
207 |
+
example["normalizations"] = []
|
208 |
+
|
209 |
+
if parse_notes:
|
210 |
+
example["notes"] = []
|
211 |
+
|
212 |
+
for line in ann_lines:
|
213 |
+
line = line.strip()
|
214 |
+
if not line:
|
215 |
+
continue
|
216 |
+
|
217 |
+
if line.startswith("T"): # Text bound
|
218 |
+
ann = {}
|
219 |
+
fields = line.split("\t")
|
220 |
+
|
221 |
+
ann["id"] = fields[0]
|
222 |
+
ann["type"] = fields[1].split()[0]
|
223 |
+
ann["offsets"] = []
|
224 |
+
span_str = self.remove_prefix(fields[1], (ann["type"] + " "))
|
225 |
+
text = fields[2]
|
226 |
+
for span in span_str.split(";"):
|
227 |
+
start, end = span.split()
|
228 |
+
ann["offsets"].append([int(start), int(end)])
|
229 |
+
|
230 |
+
# Heuristically split text of discontiguous entities into chunks
|
231 |
+
ann["text"] = []
|
232 |
+
if len(ann["offsets"]) > 1:
|
233 |
+
i = 0
|
234 |
+
for start, end in ann["offsets"]:
|
235 |
+
chunk_len = end - start
|
236 |
+
ann["text"].append(text[i : chunk_len + i])
|
237 |
+
i += chunk_len
|
238 |
+
while i < len(text) and text[i] == " ":
|
239 |
+
i += 1
|
240 |
+
else:
|
241 |
+
ann["text"] = [text]
|
242 |
+
|
243 |
+
example["text_bound_annotations"].append(ann)
|
244 |
+
|
245 |
+
elif line.startswith("E"):
|
246 |
+
ann = {}
|
247 |
+
fields = line.split("\t")
|
248 |
+
|
249 |
+
ann["id"] = fields[0]
|
250 |
+
|
251 |
+
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
252 |
+
|
253 |
+
ann["arguments"] = []
|
254 |
+
for role_ref_id in fields[1].split()[1:]:
|
255 |
+
argument = {
|
256 |
+
"role": (role_ref_id.split(":"))[0],
|
257 |
+
"ref_id": (role_ref_id.split(":"))[1],
|
258 |
+
}
|
259 |
+
ann["arguments"].append(argument)
|
260 |
+
|
261 |
+
example["events"].append(ann)
|
262 |
+
|
263 |
+
elif line.startswith("R"):
|
264 |
+
ann = {}
|
265 |
+
fields = line.split("\t")
|
266 |
+
|
267 |
+
ann["id"] = fields[0]
|
268 |
+
ann["type"] = fields[1].split()[0]
|
269 |
+
|
270 |
+
ann["head"] = {
|
271 |
+
"role": fields[1].split()[1].split(":")[0],
|
272 |
+
"ref_id": fields[1].split()[1].split(":")[1],
|
273 |
+
}
|
274 |
+
ann["tail"] = {
|
275 |
+
"role": fields[1].split()[2].split(":")[0],
|
276 |
+
"ref_id": fields[1].split()[2].split(":")[1],
|
277 |
+
}
|
278 |
+
|
279 |
+
example["relations"].append(ann)
|
280 |
+
|
281 |
+
# '*' seems to be the legacy way to mark equivalences,
|
282 |
+
# but I couldn't find any info on the current way
|
283 |
+
# this might have to be adapted dependent on the brat version
|
284 |
+
# of the annotation
|
285 |
+
elif line.startswith("*"):
|
286 |
+
ann = {}
|
287 |
+
fields = line.split("\t")
|
288 |
+
|
289 |
+
ann["id"] = fields[0]
|
290 |
+
ann["ref_ids"] = fields[1].split()[1:]
|
291 |
+
|
292 |
+
example["equivalences"].append(ann)
|
293 |
+
|
294 |
+
elif line.startswith("A") or line.startswith("M"):
|
295 |
+
ann = {}
|
296 |
+
fields = line.split("\t")
|
297 |
+
|
298 |
+
ann["id"] = fields[0]
|
299 |
+
|
300 |
+
info = fields[1].split()
|
301 |
+
ann["type"] = info[0]
|
302 |
+
ann["ref_id"] = info[1]
|
303 |
+
|
304 |
+
if len(info) > 2:
|
305 |
+
ann["value"] = info[2]
|
306 |
+
else:
|
307 |
+
ann["value"] = ""
|
308 |
+
|
309 |
+
example["attributes"].append(ann)
|
310 |
+
|
311 |
+
elif line.startswith("N"):
|
312 |
+
ann = {}
|
313 |
+
fields = line.split("\t")
|
314 |
+
|
315 |
+
ann["id"] = fields[0]
|
316 |
+
ann["text"] = fields[2]
|
317 |
+
|
318 |
+
info = fields[1].split()
|
319 |
+
|
320 |
+
ann["type"] = info[0]
|
321 |
+
ann["ref_id"] = info[1]
|
322 |
+
ann["resource_name"] = info[2].split(":")[0]
|
323 |
+
ann["cuid"] = info[2].split(":")[1]
|
324 |
+
example["normalizations"].append(ann)
|
325 |
+
|
326 |
+
elif parse_notes and line.startswith("#"):
|
327 |
+
ann = {}
|
328 |
+
fields = line.split("\t")
|
329 |
+
|
330 |
+
ann["id"] = fields[0]
|
331 |
+
ann["text"] = fields[2] if len(fields) == 3 else "<BB_NULL_STR>"
|
332 |
+
|
333 |
+
info = fields[1].split()
|
334 |
+
|
335 |
+
ann["type"] = info[0]
|
336 |
+
ann["ref_id"] = info[1]
|
337 |
+
example["notes"].append(ann)
|
338 |
+
|
339 |
+
return example
|
340 |
+
|
341 |
+
|
342 |
+
def _generate_examples(
|
343 |
+
self, data_dir: Path, language: str, dataset_type: str
|
344 |
+
) -> Tuple[int, Dict]:
|
345 |
+
"""Yields examples as (key, example) tuples."""
|
346 |
+
data_dir = data_dir / f"{_LANGUAGES_2[language]}"
|
347 |
+
|
348 |
+
if dataset_type in ["patents", "emea"]:
|
349 |
+
data_dir = data_dir / f"{_DATASET_TYPES[dataset_type]}_ec22-cui-best_man"
|
350 |
+
else:
|
351 |
+
# It is Medline now
|
352 |
+
if language != "en":
|
353 |
+
data_dir = (
|
354 |
+
data_dir
|
355 |
+
/ f"{_DATASET_TYPES[dataset_type]}_EN_{language.upper()}_ec22-cui-best_man"
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
data_dir = [
|
359 |
+
data_dir
|
360 |
+
/ f"{_DATASET_TYPES[dataset_type]}_EN_{_lang.upper()}_ec22-cui-best_man"
|
361 |
+
for _lang in _LANGUAGES_2
|
362 |
+
if _lang != "en"
|
363 |
+
]
|
364 |
+
|
365 |
+
if not isinstance(data_dir, list):
|
366 |
+
data_dir: List[Path] = [data_dir]
|
367 |
+
|
368 |
+
raw_files = [raw_file for _dir in data_dir for raw_file in _dir.glob("*.txt")]
|
369 |
+
|
370 |
+
if self.config.schema == "source":
|
371 |
+
for i, raw_file in enumerate(raw_files):
|
372 |
+
brat_example = self.parse_brat_file(raw_file, parse_notes=True)
|
373 |
+
source_example = self._to_source_example(brat_example)
|
374 |
+
yield i, source_example
|
375 |
+
|
376 |
+
def _to_source_example(self, brat_example: Dict) -> Dict:
|
377 |
+
|
378 |
+
source_example = {
|
379 |
+
"document_id": brat_example["document_id"],
|
380 |
+
"text": brat_example["text"],
|
381 |
+
}
|
382 |
+
|
383 |
+
source_example["entities"] = []
|
384 |
+
|
385 |
+
for entity_annotation, ann_notes in zip(
|
386 |
+
brat_example["text_bound_annotations"], brat_example["notes"]
|
387 |
+
):
|
388 |
+
entity_ann = entity_annotation.copy()
|
389 |
+
|
390 |
+
# Change id property name
|
391 |
+
entity_ann["entity_id"] = entity_ann["id"]
|
392 |
+
entity_ann.pop("id")
|
393 |
+
|
394 |
+
# Get values from annotator notes
|
395 |
+
assert entity_ann["entity_id"] == ann_notes["ref_id"]
|
396 |
+
notes_values = ast.literal_eval(ann_notes["text"])
|
397 |
+
if len(notes_values) == 4:
|
398 |
+
cui, preferred_term, semantic_type, semantic_group = notes_values
|
399 |
+
else:
|
400 |
+
preferred_term, semantic_type, semantic_group = notes_values
|
401 |
+
cui = entity_ann["type"]
|
402 |
+
entity_ann["cui"] = cui
|
403 |
+
entity_ann["preferred_term"] = preferred_term
|
404 |
+
entity_ann["semantic_type"] = semantic_type
|
405 |
+
entity_ann["type"] = semantic_group
|
406 |
+
entity_ann["normalized"] = [{"db_name": "UMLS", "db_id": cui}]
|
407 |
+
|
408 |
+
# Add entity annotation to sample
|
409 |
+
source_example["entities"].append(entity_ann)
|
410 |
+
|
411 |
+
return source_example
|
test_mantra_gsc.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
dataset = load_dataset("./MantraGSC.py", name="fr_emea")
|
6 |
+
print(dataset)
|
7 |
+
# print(dataset["train"][0])
|
8 |
+
print(json.dumps(dataset["train"][0], sort_keys=True, indent=4))
|