Update MANTRAGSC.py
Browse files- MANTRAGSC.py +76 -354
MANTRAGSC.py
CHANGED
@@ -13,19 +13,19 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
import json
|
19 |
import random
|
20 |
from pathlib import Path
|
21 |
from itertools import product
|
22 |
from dataclasses import dataclass
|
23 |
from typing import Dict, List, Tuple
|
24 |
|
25 |
-
import
|
26 |
-
|
27 |
import numpy as np
|
28 |
|
|
|
|
|
29 |
_CITATION = """\
|
30 |
@article{10.1093/jamia/ocv037,
|
31 |
author = {Kors, Jan A and Clematide, Simon and Akhondi,
|
@@ -69,7 +69,7 @@ _HOMEPAGE = "https://biosemantics.erasmusmc.nl/index.php/resources/mantra-gsc"
|
|
69 |
|
70 |
_LICENSE = "CC_BY_4p0"
|
71 |
|
72 |
-
_URL = "
|
73 |
|
74 |
_LANGUAGES_2 = {
|
75 |
"es": "Spanish",
|
@@ -82,7 +82,7 @@ _LANGUAGES_2 = {
|
|
82 |
_DATASET_TYPES = {
|
83 |
"emea": "EMEA",
|
84 |
"medline": "Medline",
|
85 |
-
"patents": "
|
86 |
}
|
87 |
|
88 |
@dataclass
|
@@ -118,23 +118,26 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
|
|
118 |
|
119 |
def _info(self):
|
120 |
|
121 |
-
if self.config.name.find("emea") != -1:
|
122 |
-
|
123 |
-
elif self.config.name.find("medline") != -1:
|
124 |
-
|
125 |
-
elif self.config.name.find("patents") != -1:
|
126 |
-
|
127 |
|
128 |
features = datasets.Features(
|
129 |
{
|
130 |
"id": datasets.Value("string"),
|
131 |
-
"document_id": datasets.Value("string"),
|
132 |
"tokens": [datasets.Value("string")],
|
133 |
"ner_tags": datasets.Sequence(
|
134 |
-
datasets.
|
135 |
-
names = names,
|
136 |
-
)
|
137 |
),
|
|
|
|
|
|
|
|
|
|
|
138 |
}
|
139 |
)
|
140 |
|
@@ -148,11 +151,11 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
|
|
148 |
|
149 |
def _split_generators(self, dl_manager):
|
150 |
|
|
|
|
|
151 |
data_dir = dl_manager.download_and_extract(_URL)
|
152 |
|
153 |
-
data_dir = Path(data_dir) / "
|
154 |
-
|
155 |
-
language, dataset_type = self.config.name.split("_")
|
156 |
|
157 |
return [
|
158 |
datasets.SplitGenerator(
|
@@ -184,328 +187,83 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
|
|
184 |
),
|
185 |
]
|
186 |
|
187 |
-
def
|
188 |
-
|
189 |
-
def prepare_split(text):
|
190 |
-
|
191 |
-
rep_before = ['?', '!', ';', '*']
|
192 |
-
rep_after = ['’', "'"]
|
193 |
-
rep_both = ['-', '/', '[', ']', ':', ')', '(', ',', '.']
|
194 |
-
|
195 |
-
for i in rep_before:
|
196 |
-
text = text.replace(i, ' '+i)
|
197 |
-
|
198 |
-
for i in rep_after:
|
199 |
-
text = text.replace(i, i+' ')
|
200 |
-
|
201 |
-
for i in rep_both:
|
202 |
-
text = text.replace(i, ' '+i+' ')
|
203 |
-
|
204 |
-
text_split = text.split()
|
205 |
-
|
206 |
-
punctuations = [',', '.']
|
207 |
-
for j in range(0, len(text_split)-1):
|
208 |
-
if j-1 >= 0 and j+1 <= len(text_split)-1 and text_split[j-1][-1].isdigit() and text_split[j+1][0].isdigit():
|
209 |
-
if text_split[j] in punctuations:
|
210 |
-
text_split[j-1:j+2] = [''.join(text_split[j-1:j+2])]
|
211 |
-
|
212 |
-
text = ' '.join(text_split)
|
213 |
-
|
214 |
-
return text
|
215 |
-
|
216 |
-
new_json = []
|
217 |
|
218 |
-
|
|
|
219 |
|
220 |
-
|
221 |
|
222 |
-
|
223 |
|
224 |
-
|
|
|
225 |
|
226 |
-
|
|
|
227 |
|
228 |
-
for
|
229 |
|
230 |
-
|
231 |
|
232 |
-
|
233 |
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
|
|
|
238 |
|
239 |
-
|
|
|
|
|
240 |
|
241 |
-
|
242 |
|
243 |
-
|
244 |
-
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
'token_end': token_end,
|
251 |
-
'label': a['type'],
|
252 |
-
'id': ex['document_id'] + "_" + str(cpt),
|
253 |
-
'text': a['text'][o],
|
254 |
})
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
res = {
|
259 |
-
'id': ex['document_id'],
|
260 |
-
'document_id': ex['document_id'],
|
261 |
-
'text': ex['text'],
|
262 |
-
'tokens': tokenized_text,
|
263 |
-
'spans': list_spans
|
264 |
-
}
|
265 |
-
|
266 |
-
new_json.append(res)
|
267 |
-
|
268 |
-
return new_json
|
269 |
-
|
270 |
-
def convert_to_hf_format(self, json_object):
|
271 |
-
"""
|
272 |
-
Le format prends en compte le multilabel en faisant une concaténation avec "_" entre chaque label
|
273 |
-
"""
|
274 |
-
|
275 |
-
dict_out = []
|
276 |
-
|
277 |
-
for i in json_object:
|
278 |
-
|
279 |
-
nb_tokens = len(i['tokens'])
|
280 |
-
|
281 |
-
ner_tags = ['O']*nb_tokens
|
282 |
-
|
283 |
-
if 'spans' in i:
|
284 |
-
|
285 |
-
for j in i['spans']:
|
286 |
-
|
287 |
-
for x in range(j['token_start'], j['token_end']+1, 1):
|
288 |
-
|
289 |
-
if i['tokens'][x] not in j['text'] and i['tokens'][x] != "Matériovigilance":
|
290 |
-
|
291 |
-
if ner_tags[x-1] == 'O':
|
292 |
-
ner_tags[x-1] = j['label']
|
293 |
-
else:
|
294 |
-
pass
|
295 |
-
else:
|
296 |
-
if ner_tags[x] == 'O':
|
297 |
-
ner_tags[x] = j['label']
|
298 |
-
else:
|
299 |
-
# Commenter la ligne et mettre pass si on veut prendre qu'un label par token
|
300 |
-
pass
|
301 |
-
|
302 |
-
dict_out.append({
|
303 |
-
'id': i['id'],
|
304 |
-
'document_id': i['document_id'],
|
305 |
-
"ner_tags": ner_tags,
|
306 |
-
"tokens": i['tokens'],
|
307 |
-
})
|
308 |
-
|
309 |
-
return dict_out
|
310 |
-
|
311 |
-
def remove_prefix(self, a: str, prefix: str) -> str:
|
312 |
-
if a.startswith(prefix):
|
313 |
-
a = a[len(prefix) :]
|
314 |
-
return a
|
315 |
-
|
316 |
-
def parse_brat_file(self, txt_file: Path, annotation_file_suffixes: List[str] = None, parse_notes: bool = False):
|
317 |
-
|
318 |
-
example = {}
|
319 |
-
example["document_id"] = txt_file.with_suffix("").name
|
320 |
-
with txt_file.open() as f:
|
321 |
-
example["text"] = f.read()
|
322 |
-
|
323 |
-
if annotation_file_suffixes is None:
|
324 |
-
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
325 |
-
|
326 |
-
if len(annotation_file_suffixes) == 0:
|
327 |
-
raise AssertionError("At least one suffix for the to-be-read annotation files should be given!")
|
328 |
-
|
329 |
-
ann_lines = []
|
330 |
-
for suffix in annotation_file_suffixes:
|
331 |
-
annotation_file = txt_file.with_suffix(suffix)
|
332 |
-
if annotation_file.exists():
|
333 |
-
with annotation_file.open() as f:
|
334 |
-
ann_lines.extend(f.readlines())
|
335 |
-
|
336 |
-
example["text_bound_annotations"] = []
|
337 |
-
example["events"] = []
|
338 |
-
example["relations"] = []
|
339 |
-
example["equivalences"] = []
|
340 |
-
example["attributes"] = []
|
341 |
-
example["normalizations"] = []
|
342 |
-
|
343 |
-
if parse_notes:
|
344 |
-
example["notes"] = []
|
345 |
-
|
346 |
-
for line in ann_lines:
|
347 |
-
line = line.strip()
|
348 |
-
if not line:
|
349 |
-
continue
|
350 |
-
|
351 |
-
if line.startswith("T"): # Text bound
|
352 |
-
ann = {}
|
353 |
-
fields = line.split("\t")
|
354 |
-
|
355 |
-
ann["id"] = fields[0]
|
356 |
-
ann["type"] = fields[1].split()[0]
|
357 |
-
ann["offsets"] = []
|
358 |
-
span_str = self.remove_prefix(fields[1], (ann["type"] + " "))
|
359 |
-
text = fields[2]
|
360 |
-
for span in span_str.split(";"):
|
361 |
-
start, end = span.split()
|
362 |
-
ann["offsets"].append([int(start), int(end)])
|
363 |
-
|
364 |
-
# Heuristically split text of discontiguous entities into chunks
|
365 |
-
ann["text"] = []
|
366 |
-
if len(ann["offsets"]) > 1:
|
367 |
-
i = 0
|
368 |
-
for start, end in ann["offsets"]:
|
369 |
-
chunk_len = end - start
|
370 |
-
ann["text"].append(text[i : chunk_len + i])
|
371 |
-
i += chunk_len
|
372 |
-
while i < len(text) and text[i] == " ":
|
373 |
-
i += 1
|
374 |
-
else:
|
375 |
-
ann["text"] = [text]
|
376 |
-
|
377 |
-
example["text_bound_annotations"].append(ann)
|
378 |
-
|
379 |
-
elif line.startswith("E"):
|
380 |
-
ann = {}
|
381 |
-
fields = line.split("\t")
|
382 |
-
|
383 |
-
ann["id"] = fields[0]
|
384 |
|
385 |
-
|
386 |
|
387 |
-
|
388 |
-
for role_ref_id in fields[1].split()[1:]:
|
389 |
-
argument = {
|
390 |
-
"role": (role_ref_id.split(":"))[0],
|
391 |
-
"ref_id": (role_ref_id.split(":"))[1],
|
392 |
-
}
|
393 |
-
ann["arguments"].append(argument)
|
394 |
|
395 |
-
|
|
|
|
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
fields = line.split("\t")
|
400 |
|
401 |
-
|
402 |
-
|
|
|
|
|
403 |
|
404 |
-
|
405 |
-
"
|
406 |
-
"
|
|
|
407 |
}
|
408 |
-
|
409 |
-
|
410 |
-
"ref_id": fields[1].split()[2].split(":")[1],
|
411 |
-
}
|
412 |
-
|
413 |
-
example["relations"].append(ann)
|
414 |
-
|
415 |
-
elif line.startswith("*"):
|
416 |
-
ann = {}
|
417 |
-
fields = line.split("\t")
|
418 |
-
|
419 |
-
ann["id"] = fields[0]
|
420 |
-
ann["ref_ids"] = fields[1].split()[1:]
|
421 |
-
|
422 |
-
example["equivalences"].append(ann)
|
423 |
-
|
424 |
-
elif line.startswith("A") or line.startswith("M"):
|
425 |
-
ann = {}
|
426 |
-
fields = line.split("\t")
|
427 |
-
|
428 |
-
ann["id"] = fields[0]
|
429 |
-
|
430 |
-
info = fields[1].split()
|
431 |
-
ann["type"] = info[0]
|
432 |
-
ann["ref_id"] = info[1]
|
433 |
-
|
434 |
-
if len(info) > 2:
|
435 |
-
ann["value"] = info[2]
|
436 |
-
else:
|
437 |
-
ann["value"] = ""
|
438 |
-
|
439 |
-
example["attributes"].append(ann)
|
440 |
-
|
441 |
-
elif line.startswith("N"):
|
442 |
-
ann = {}
|
443 |
-
fields = line.split("\t")
|
444 |
-
|
445 |
-
ann["id"] = fields[0]
|
446 |
-
ann["text"] = fields[2]
|
447 |
-
|
448 |
-
info = fields[1].split()
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
ann["resource_name"] = info[2].split(":")[0]
|
453 |
-
ann["cuid"] = info[2].split(":")[1]
|
454 |
-
example["normalizations"].append(ann)
|
455 |
-
|
456 |
-
elif parse_notes and line.startswith("#"):
|
457 |
-
ann = {}
|
458 |
-
fields = line.split("\t")
|
459 |
-
|
460 |
-
ann["id"] = fields[0]
|
461 |
-
ann["text"] = fields[2] if len(fields) == 3 else "<BB_NULL_STR>"
|
462 |
-
|
463 |
-
info = fields[1].split()
|
464 |
-
|
465 |
-
ann["type"] = info[0]
|
466 |
-
ann["ref_id"] = info[1]
|
467 |
-
example["notes"].append(ann)
|
468 |
-
|
469 |
-
return example
|
470 |
-
|
471 |
-
def _generate_examples(self, data_dir, language, dataset_type, split):
|
472 |
-
"""Yields examples as (key, example) tuples."""
|
473 |
-
|
474 |
-
data_dir = data_dir / f"{_LANGUAGES_2[language]}"
|
475 |
-
|
476 |
-
if dataset_type in ["patents", "emea"]:
|
477 |
-
data_dir = data_dir / f"{_DATASET_TYPES[dataset_type]}_ec22-cui-best_man"
|
478 |
-
else:
|
479 |
-
# Medline
|
480 |
-
if language != "en":
|
481 |
-
data_dir = (
|
482 |
-
data_dir
|
483 |
-
/ f"{_DATASET_TYPES[dataset_type]}_EN_{language.upper()}_ec22-cui-best_man"
|
484 |
-
)
|
485 |
-
else:
|
486 |
-
data_dir = [
|
487 |
-
data_dir
|
488 |
-
/ f"{_DATASET_TYPES[dataset_type]}_EN_{_lang.upper()}_ec22-cui-best_man"
|
489 |
-
for _lang in _LANGUAGES_2
|
490 |
-
if _lang != "en"
|
491 |
-
]
|
492 |
-
|
493 |
-
if not isinstance(data_dir, list):
|
494 |
-
data_dir: List[Path] = [data_dir]
|
495 |
-
|
496 |
-
raw_files = [raw_file for _dir in data_dir for raw_file in _dir.glob("*.txt")]
|
497 |
-
|
498 |
-
all_res = []
|
499 |
-
|
500 |
-
for i, raw_file in enumerate(raw_files):
|
501 |
-
brat_example = self.parse_brat_file(raw_file, parse_notes=True)
|
502 |
-
source_example = self._to_source_example(brat_example)
|
503 |
-
|
504 |
-
prod_format = self.convert_to_prodigy(source_example)
|
505 |
-
|
506 |
-
hf_format = self.convert_to_hf_format(prod_format)[0]
|
507 |
-
all_res.append(hf_format)
|
508 |
-
|
509 |
ids = [r["id"] for r in all_res]
|
510 |
|
511 |
random.seed(4)
|
@@ -526,39 +284,3 @@ class MANTRAGSC(datasets.GeneratorBasedBuilder):
|
|
526 |
identifier = r["id"]
|
527 |
if identifier in allowed_ids:
|
528 |
yield identifier, r
|
529 |
-
|
530 |
-
def _to_source_example(self, brat_example):
|
531 |
-
|
532 |
-
source_example = {
|
533 |
-
"document_id": brat_example["document_id"],
|
534 |
-
"text": brat_example["text"],
|
535 |
-
}
|
536 |
-
|
537 |
-
source_example["entities"] = []
|
538 |
-
|
539 |
-
for entity_annotation, ann_notes in zip(brat_example["text_bound_annotations"], brat_example["notes"]):
|
540 |
-
|
541 |
-
entity_ann = entity_annotation.copy()
|
542 |
-
|
543 |
-
entity_ann["entity_id"] = entity_ann["id"]
|
544 |
-
entity_ann.pop("id")
|
545 |
-
|
546 |
-
# Get values from annotator notes
|
547 |
-
assert entity_ann["entity_id"] == ann_notes["ref_id"]
|
548 |
-
notes_values = ast.literal_eval(ann_notes["text"])
|
549 |
-
|
550 |
-
if len(notes_values) == 4:
|
551 |
-
cui, preferred_term, semantic_type, semantic_group = notes_values
|
552 |
-
else:
|
553 |
-
preferred_term, semantic_type, semantic_group = notes_values
|
554 |
-
cui = entity_ann["type"]
|
555 |
-
|
556 |
-
entity_ann["cui"] = cui
|
557 |
-
entity_ann["preferred_term"] = preferred_term
|
558 |
-
entity_ann["semantic_type"] = semantic_type
|
559 |
-
entity_ann["type"] = semantic_group
|
560 |
-
entity_ann["normalized"] = [{"db_name": "UMLS", "db_id": cui}]
|
561 |
-
|
562 |
-
source_example["entities"].append(entity_ann)
|
563 |
-
|
564 |
-
return source_example
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
|
16 |
+
# pip install xmltodict
|
17 |
+
|
|
|
18 |
import random
|
19 |
from pathlib import Path
|
20 |
from itertools import product
|
21 |
from dataclasses import dataclass
|
22 |
from typing import Dict, List, Tuple
|
23 |
|
24 |
+
import xmltodict
|
|
|
25 |
import numpy as np
|
26 |
|
27 |
+
import datasets
|
28 |
+
|
29 |
_CITATION = """\
|
30 |
@article{10.1093/jamia/ocv037,
|
31 |
author = {Kors, Jan A and Clematide, Simon and Akhondi,
|
|
|
69 |
|
70 |
_LICENSE = "CC_BY_4p0"
|
71 |
|
72 |
+
_URL = "https://files.ifi.uzh.ch/cl/mantra/gsc/GSC-v1.1.zip"
|
73 |
|
74 |
_LANGUAGES_2 = {
|
75 |
"es": "Spanish",
|
|
|
82 |
_DATASET_TYPES = {
|
83 |
"emea": "EMEA",
|
84 |
"medline": "Medline",
|
85 |
+
"patents": "Patent",
|
86 |
}
|
87 |
|
88 |
@dataclass
|
|
|
118 |
|
119 |
def _info(self):
|
120 |
|
121 |
+
# if self.config.name.find("emea") != -1:
|
122 |
+
# names = ['O', 'DISO', 'CHEM|PHEN', 'DEVI', 'PHEN', 'PROC', 'OBJC', 'ANAT', 'LIVB', 'CHEM', 'PHYS']
|
123 |
+
# elif self.config.name.find("medline") != -1:
|
124 |
+
# names = ['O', 'DISO', 'GEOG', 'DEVI', 'Manufactured Object', 'PHEN', 'PROC', 'Research Device', 'OBJC', 'Mental or Behavioral Dysfunction', 'Research Activity', 'ANAT', 'LIVB', 'CHEM', 'PHYS']
|
125 |
+
# elif self.config.name.find("patents") != -1:
|
126 |
+
# names = ['O', 'PROC', 'DISO', 'LIVB', 'PHYS', 'PHEN', 'ANAT', 'OBJC', 'Amino Acid, Peptide, or Protein|Enzyme|Receptor', 'DEVI', 'CHEM']
|
127 |
|
128 |
features = datasets.Features(
|
129 |
{
|
130 |
"id": datasets.Value("string"),
|
131 |
+
# "document_id": datasets.Value("string"),
|
132 |
"tokens": [datasets.Value("string")],
|
133 |
"ner_tags": datasets.Sequence(
|
134 |
+
datasets.Value("string")
|
|
|
|
|
135 |
),
|
136 |
+
# "ner_tags": datasets.Sequence(
|
137 |
+
# datasets.features.ClassLabel(
|
138 |
+
# names = names,
|
139 |
+
# )
|
140 |
+
# ),
|
141 |
}
|
142 |
)
|
143 |
|
|
|
151 |
|
152 |
def _split_generators(self, dl_manager):
|
153 |
|
154 |
+
language, dataset_type = self.config.name.split("_")
|
155 |
+
|
156 |
data_dir = dl_manager.download_and_extract(_URL)
|
157 |
|
158 |
+
data_dir = Path(data_dir) / "GSC-v1.1" / f"{_DATASET_TYPES[dataset_type]}_GSC_{language}_man.xml"
|
|
|
|
|
159 |
|
160 |
return [
|
161 |
datasets.SplitGenerator(
|
|
|
187 |
),
|
188 |
]
|
189 |
|
190 |
+
def _generate_examples(self, data_dir, language, dataset_type, split):
|
191 |
+
"""Yields examples as (key, example) tuples."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
with open(data_dir) as fd:
|
194 |
+
doc = xmltodict.parse(fd.read())
|
195 |
|
196 |
+
all_res = []
|
197 |
|
198 |
+
for d in doc["Corpus"]["document"]:
|
199 |
|
200 |
+
# print(d)
|
201 |
+
# print()
|
202 |
|
203 |
+
if type(d["unit"]) != type(list()):
|
204 |
+
d["unit"] = [d["unit"]]
|
205 |
|
206 |
+
for u in d["unit"]:
|
207 |
|
208 |
+
text = u["text"]
|
209 |
|
210 |
+
if "e" in u.keys():
|
211 |
|
212 |
+
if type(u["e"]) != type(list()):
|
213 |
+
u["e"] = [u["e"]]
|
214 |
+
|
215 |
+
tags = [{
|
216 |
+
"label": current["@grp"].upper(),
|
217 |
+
"offset_start": int(current["@offset"]),
|
218 |
+
"offset_end": int(current["@offset"]) + int(current["@len"]),
|
219 |
+
} for current in u["e"]]
|
220 |
|
221 |
+
else:
|
222 |
+
tags = []
|
223 |
|
224 |
+
_tokens = text.split(" ")
|
225 |
+
tokens = []
|
226 |
+
for i, t in enumerate(_tokens):
|
227 |
|
228 |
+
concat = " ".join(_tokens[0:i+1])
|
229 |
|
230 |
+
offset_start = len(concat) - len(t)
|
231 |
+
offset_end = len(concat)
|
232 |
|
233 |
+
tokens.append({
|
234 |
+
"token": t,
|
235 |
+
"offset_start": offset_start,
|
236 |
+
"offset_end": offset_end,
|
|
|
|
|
|
|
|
|
237 |
})
|
238 |
|
239 |
+
ner_tags = ["O" for o in tokens]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
+
for tag in tags:
|
242 |
|
243 |
+
for idx, token in enumerate(tokens):
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
+
# Range du tag
|
246 |
+
rtok = range(token["offset_start"], token["offset_end"]+1)
|
247 |
+
rtag = range(tag["offset_start"], tag["offset_end"]+1)
|
248 |
|
249 |
+
# Check if the ranges are overlapping
|
250 |
+
if bool(set(rtok) & set(rtag)):
|
|
|
251 |
|
252 |
+
# if ner_tags[idx] != "O" and ner_tags[idx] != tag['label']:
|
253 |
+
# print(f"{token} - currently: {ner_tags[idx]} - after: {tag['label']}")
|
254 |
+
|
255 |
+
ner_tags[idx] = tag["label"]
|
256 |
|
257 |
+
obj = {
|
258 |
+
"id": u["@id"],
|
259 |
+
"tokens": [t["token"] for t in tokens],
|
260 |
+
"ner_tags": ner_tags,
|
261 |
}
|
262 |
+
# print(obj)
|
263 |
+
# print("*"*50)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
+
all_res.append(obj)
|
266 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
ids = [r["id"] for r in all_res]
|
268 |
|
269 |
random.seed(4)
|
|
|
284 |
identifier = r["id"]
|
285 |
if identifier in allowed_ids:
|
286 |
yield identifier, r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|