Dragunflie-420 commited on
Commit
85e47e4
1 Parent(s): 4041d57

Update fma.py

Browse files
Files changed (1) hide show
  1. fma.py +119 -0
fma.py CHANGED
@@ -41,6 +41,125 @@ _URLs = {
41
  "metadata": "https://os.unil.cloud.switch.ch/fma/fma_metadata.zip",
42
  }
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  class FMADataset(datasets.GeneratorBasedBuilder):
46
  """FMA small dataset."""
 
41
  "metadata": "https://os.unil.cloud.switch.ch/fma/fma_metadata.zip",
42
  }
43
 
44
+ class FMADataset(datasets.GeneratorBasedBuilder):
45
+ """FMA small dataset."""
46
+
47
+ VERSION = datasets.Version("1.0.0")
48
+
49
+ BUILDER_CONFIGS = [
50
+ datasets.BuilderConfig(name="small", version=VERSION, description="The small subset of FMA dataset"),
51
+ ]
52
+
53
+ def _info(self):
54
+ features = datasets.Features(
55
+ {
56
+ "track_id": datasets.Value("int32"),
57
+ "title": datasets.Value("string"),
58
+ "artist": datasets.Value("string"),
59
+ "genre": datasets.Value("string"),
60
+ "audio": datasets.Audio(sampling_rate=44100),
61
+ }
62
+ )
63
+ return datasets.DatasetInfo(
64
+ description=_DESCRIPTION,
65
+ features=features,
66
+ homepage=_HOMEPAGE,
67
+ license=_LICENSE,
68
+ citation=_CITATION,
69
+ )
70
+
71
+ def _split_generators(self, dl_manager):
72
+ """Returns SplitGenerators."""
73
+ data_dir = dl_manager.download_and_extract(_URLs)
74
+ return [
75
+ datasets.SplitGenerator(
76
+ name=datasets.Split.TRAIN,
77
+ gen_kwargs={
78
+ "filepath": os.path.join(data_dir["small"], "fma_small"),
79
+ "metadata_path": os.path.join(data_dir["metadata"], "fma_metadata"),
80
+ },
81
+ ),
82
+ ]
83
+
84
+ def _generate_examples(self, filepath, metadata_path):
85
+ """Yields examples."""
86
+ # Load metadata
87
+ tracks = pd.read_csv(os.path.join(metadata_path, "tracks.csv"), index_col=0, header=[0, 1])
88
+
89
+ # Iterate through audio files
90
+ for root, _, files in os.walk(filepath):
91
+ for file in files:
92
+ if file.endswith('.mp3'):
93
+ track_id = int(file.split('.')[0])
94
+ audio_path = os.path.join(root, file)
95
+
96
+ # Get metadata
97
+ title = tracks.loc[track_id, ('track', 'title')]
98
+ artist = tracks.loc[track_id, ('artist', 'name')]
99
+ genre = tracks.loc[track_id, ('track', 'genre_top')]
100
+
101
+ yield track_id, {
102
+ "track_id": track_id,
103
+ "title": title,
104
+ "artist": artist,
105
+ "genre": genre,
106
+ "audio": audio_path,
107
+ }
108
+
109
+ @property
110
+ def manual_download_instructions(self):
111
+ return """
112
+ To use the FMA dataset, you need to download it manually. Please follow these steps:
113
+
114
+ 1. Go to https://github.com/mdeff/fma
115
+ 2. Download the 'fma_small.zip' and 'fma_metadata.zip' files
116
+ 3. Extract both zip files
117
+ 4. Copy the 'fma_small' folder and the 'fma_metadata' folder to the root of this dataset repository
118
+
119
+ Once you have completed these steps, the dataset will be ready to use.
120
+ """ coding=utf-8
121
+ # Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
122
+ #
123
+ # Licensed under the Apache License, Version 2.0 (the "License");
124
+ # you may not use this file except in compliance with the License.
125
+ # You may obtain a copy of the License at
126
+ #
127
+ # http://www.apache.org/licenses/LICENSE-2.0
128
+ #
129
+ # Unless required by applicable law or agreed to in writing, software
130
+ # distributed under the License is distributed on an "AS IS" BASIS,
131
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
132
+ # See the License for the specific language governing permissions and
133
+ # limitations under the License.
134
+
135
+ import os
136
+ import pandas as pd
137
+ import numpy as np
138
+
139
+ import datasets
140
+
141
+ _CITATION = """
142
+ @inproceedings{defferrard2016fma,
143
+ title={FMA: A Dataset for Music Analysis},
144
+ author={Defferrard, Micha{\"e}l and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier},
145
+ booktitle={18th International Society for Music Information Retrieval Conference},
146
+ year={2017},
147
+ }
148
+ """
149
+
150
+ _DESCRIPTION = """
151
+ The Free Music Archive (FMA) is an open and easily accessible dataset of music collections.
152
+ """
153
+
154
+ _HOMEPAGE = "https://github.com/mdeff/fma"
155
+
156
+ _LICENSE = "Creative Commons Attribution 4.0 International License"
157
+
158
+ _URLs = {
159
+ "small": "https://os.unil.cloud.switch.ch/fma/fma_small.zip",
160
+ "metadata": "https://os.unil.cloud.switch.ch/fma/fma_metadata.zip",
161
+ }
162
+
163
 
164
  class FMADataset(datasets.GeneratorBasedBuilder):
165
  """FMA small dataset."""