Datasets:

File size: 9,744 Bytes
45a87fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7a7d2
45a87fc
ab7a7d2
45a87fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Electricity Transformer Temperature (ETT) dataset."""
from dataclasses import dataclass

import pandas as pd

import datasets


_CITATION = """\
@inproceedings{haoyietal-informer-2021,
  author    = {Haoyi Zhou and
               Shanghang Zhang and
               Jieqi Peng and
               Shuai Zhang and
               Jianxin Li and
               Hui Xiong and
               Wancai Zhang},
  title     = {Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting},
  booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence, {AAAI} 2021, Virtual Conference},
  volume    = {35},
  number    = {12},
  pages     = {11106--11115},
  publisher = {{AAAI} Press},
  year      = {2021},
}
"""

_DESCRIPTION = """\
The data of Electricity Transformers from two separated counties
in China collected for two years at hourly and 15-min frequencies.
Each data point consists of the target value "oil temperature" and
6 power load features. The train/val/test is 12/4/4 months.
"""

_HOMEPAGE = "https://github.com/zhouhaoyi/ETDataset"

_LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "h1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv",
    "h2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh2.csv",
    "m1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv",
    "m2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm2.csv",
}


@dataclass
class ETTBuilderConfig(datasets.BuilderConfig):
    """ETT builder config."""

    prediction_length: int = 24
    multivariate: bool = False


class ETT(datasets.GeneratorBasedBuilder):
    """Electricity Transformer Temperature (ETT) dataset"""

    VERSION = datasets.Version("1.0.0")

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('ett', 'h1')
    # data = datasets.load_dataset('ett', 'm2')
    BUILDER_CONFIGS = [
        ETTBuilderConfig(
            name="h1",
            version=VERSION,
            description="Time series from first county at hourly frequency.",
        ),
        ETTBuilderConfig(
            name="h2",
            version=VERSION,
            description="Time series from second county at hourly frequency.",
        ),
        ETTBuilderConfig(
            name="m1",
            version=VERSION,
            description="Time series from first county at 15-min frequency.",
        ),
        ETTBuilderConfig(
            name="m2",
            version=VERSION,
            description="Time series from second county at 15-min frequency.",
        ),
    ]

    DEFAULT_CONFIG_NAME = "h1"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        if self.config.multivariate:
            features = datasets.Features(
                {
                    "start": datasets.Value("timestamp[s]"),
                    "target": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
                    "feat_static_cat": datasets.Sequence(datasets.Value("uint64")),
                    "item_id": datasets.Value("string"),
                }
            )
        else:
            features = datasets.Features(
                {
                    "start": datasets.Value("timestamp[s]"),
                    "target": datasets.Sequence(datasets.Value("float32")),
                    "feat_static_cat": datasets.Sequence(datasets.Value("uint64")),
                    "feat_dynamic_real": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
                    "item_id": datasets.Value("string"),
                }
            )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        filepath = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepath,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepath,
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": filepath,
                    "split": "dev",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        data = pd.read_csv(filepath, parse_dates=True, index_col=0)
        start_date = data.index.min()

        if self.config.name in ["m1", "m2"]:
            factor = 4  # 15-min frequency
        else:
            factor = 1  # hourly frequency
        train_end_date_index = 12 * 30 * 24 * factor  # 1 year

        if split == "dev":
            end_date_index = train_end_date_index + 4 * 30 * 24 * factor  # 1 year + 4 months
        else:
            end_date_index = train_end_date_index + 8 * 30 * 24 * factor  # 1 year + 8 months

        if self.config.multivariate:
            if split in ["test", "dev"]:
                # rolling windows of prediction_length for dev and test
                for i, index in enumerate(
                    range(
                        train_end_date_index,
                        end_date_index,
                        self.config.prediction_length,
                    )
                ):
                    yield i, {
                        "start": start_date,
                        "target": data[: index + self.config.prediction_length].values.astype("float32").T,
                        "feat_static_cat": [0],
                        "item_id": "0",
                    }
            else:
                yield 0, {
                    "start": start_date,
                    "target": data[:train_end_date_index].values.astype("float32").T,
                    "feat_static_cat": [0],
                    "item_id": "0",
                }
        else:
            if split in ["test", "dev"]:
                # rolling windows of prediction_length for dev and test
                for i, index in enumerate(
                    range(
                        train_end_date_index,
                        end_date_index,
                        self.config.prediction_length,
                    )
                ):
                    target = data["OT"][: index + self.config.prediction_length].values.astype("float32")
                    feat_dynamic_real = data[["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL"]][
                        : index + self.config.prediction_length
                    ].values.T.astype("float32")
                    yield i, {
                        "start": start_date,
                        "target": target,
                        "feat_dynamic_real": feat_dynamic_real,
                        "feat_static_cat": [0],
                        "item_id": "OT",
                    }
            else:
                target = data["OT"][:train_end_date_index].values.astype("float32")
                feat_dynamic_real = data[["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL"]][
                    :train_end_date_index
                ].values.T.astype("float32")
                yield 0, {
                    "start": start_date,
                    "target": target,
                    "feat_dynamic_real": feat_dynamic_real,
                    "feat_static_cat": [0],
                    "item_id": "OT",
                }