Datasets:
File size: 9,744 Bytes
45a87fc ab7a7d2 45a87fc ab7a7d2 45a87fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Electricity Transformer Temperature (ETT) dataset."""
from dataclasses import dataclass
import pandas as pd
import datasets
_CITATION = """\
@inproceedings{haoyietal-informer-2021,
author = {Haoyi Zhou and
Shanghang Zhang and
Jieqi Peng and
Shuai Zhang and
Jianxin Li and
Hui Xiong and
Wancai Zhang},
title = {Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting},
booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence, {AAAI} 2021, Virtual Conference},
volume = {35},
number = {12},
pages = {11106--11115},
publisher = {{AAAI} Press},
year = {2021},
}
"""
_DESCRIPTION = """\
The data of Electricity Transformers from two separated counties
in China collected for two years at hourly and 15-min frequencies.
Each data point consists of the target value "oil temperature" and
6 power load features. The train/val/test is 12/4/4 months.
"""
_HOMEPAGE = "https://github.com/zhouhaoyi/ETDataset"
_LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"h1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv",
"h2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh2.csv",
"m1": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv",
"m2": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm2.csv",
}
@dataclass
class ETTBuilderConfig(datasets.BuilderConfig):
"""ETT builder config."""
prediction_length: int = 24
multivariate: bool = False
class ETT(datasets.GeneratorBasedBuilder):
"""Electricity Transformer Temperature (ETT) dataset"""
VERSION = datasets.Version("1.0.0")
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('ett', 'h1')
# data = datasets.load_dataset('ett', 'm2')
BUILDER_CONFIGS = [
ETTBuilderConfig(
name="h1",
version=VERSION,
description="Time series from first county at hourly frequency.",
),
ETTBuilderConfig(
name="h2",
version=VERSION,
description="Time series from second county at hourly frequency.",
),
ETTBuilderConfig(
name="m1",
version=VERSION,
description="Time series from first county at 15-min frequency.",
),
ETTBuilderConfig(
name="m2",
version=VERSION,
description="Time series from second county at 15-min frequency.",
),
]
DEFAULT_CONFIG_NAME = "h1" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.multivariate:
features = datasets.Features(
{
"start": datasets.Value("timestamp[s]"),
"target": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"feat_static_cat": datasets.Sequence(datasets.Value("uint64")),
"item_id": datasets.Value("string"),
}
)
else:
features = datasets.Features(
{
"start": datasets.Value("timestamp[s]"),
"target": datasets.Sequence(datasets.Value("float32")),
"feat_static_cat": datasets.Sequence(datasets.Value("uint64")),
"feat_dynamic_real": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"item_id": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
filepath = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": filepath,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": filepath,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": filepath,
"split": "dev",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
data = pd.read_csv(filepath, parse_dates=True, index_col=0)
start_date = data.index.min()
if self.config.name in ["m1", "m2"]:
factor = 4 # 15-min frequency
else:
factor = 1 # hourly frequency
train_end_date_index = 12 * 30 * 24 * factor # 1 year
if split == "dev":
end_date_index = train_end_date_index + 4 * 30 * 24 * factor # 1 year + 4 months
else:
end_date_index = train_end_date_index + 8 * 30 * 24 * factor # 1 year + 8 months
if self.config.multivariate:
if split in ["test", "dev"]:
# rolling windows of prediction_length for dev and test
for i, index in enumerate(
range(
train_end_date_index,
end_date_index,
self.config.prediction_length,
)
):
yield i, {
"start": start_date,
"target": data[: index + self.config.prediction_length].values.astype("float32").T,
"feat_static_cat": [0],
"item_id": "0",
}
else:
yield 0, {
"start": start_date,
"target": data[:train_end_date_index].values.astype("float32").T,
"feat_static_cat": [0],
"item_id": "0",
}
else:
if split in ["test", "dev"]:
# rolling windows of prediction_length for dev and test
for i, index in enumerate(
range(
train_end_date_index,
end_date_index,
self.config.prediction_length,
)
):
target = data["OT"][: index + self.config.prediction_length].values.astype("float32")
feat_dynamic_real = data[["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL"]][
: index + self.config.prediction_length
].values.T.astype("float32")
yield i, {
"start": start_date,
"target": target,
"feat_dynamic_real": feat_dynamic_real,
"feat_static_cat": [0],
"item_id": "OT",
}
else:
target = data["OT"][:train_end_date_index].values.astype("float32")
feat_dynamic_real = data[["HUFL", "HULL", "MUFL", "MULL", "LUFL", "LULL"]][
:train_end_date_index
].values.T.astype("float32")
yield 0, {
"start": start_date,
"target": target,
"feat_dynamic_real": feat_dynamic_real,
"feat_static_cat": [0],
"item_id": "OT",
}
|