import os import pandas as pd import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {WikiArt}, author={MedellĂ­n AI. }, year={2023} } """ _DESCRIPTION = """\ Este dataset fue creado para el workshop de Medellin AI y Bancolombia con fines educativos. """ _HOMEPAGE = "https://www.meetup.com/medellin-ai/" _LICENSE = "mit" _URLS = { "train": "https://workshophuggingface.blob.core.windows.net/wikiart/train.zip", "test": "https://workshophuggingface.blob.core.windows.net/wikiart/test.zip" } _NAMES = ["Baroque", "Realism"] class WikiArt(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DEFAULT_WRITER_BATCH_SIZE = 200 BUILDER_CONFIGS = [ datasets.BuilderConfig(name="All", version=VERSION, description="This contains the whole dataset"), datasets.BuilderConfig(name="Baroque", version=VERSION, description="This part of the dataset contains only Baroque style"), datasets.BuilderConfig(name="Realism", version=VERSION, description="This part of the dataset contains only Realism style"), ] def _info(self): features = datasets.Features( { "style": datasets.features.ClassLabel(names=_NAMES), "artwork": datasets.Value("string"), "image": datasets.Image(decode=True) } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("image", "style"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive data_dir = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "folderpath" : data_dir['train'], "csv_file": 'wikiart_scraped_train.csv', "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "folderpath" : data_dir['test'], "csv_file": 'wikiart_scraped_test.csv', "split": "test" }, ) ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, folderpath, csv_file, split): df_wiki_art = pd.read_csv(os.path.join(folderpath,split,csv_file), header=0) if self.config.name != 'All': df_wiki_art.query(f"Style == '{self.config.name}'", inplace=True) # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. for index, row in df_wiki_art.iterrows(): image_path = os.path.join(folderpath,split,row['Link'].split('/')[-1]) # Yields examples as (key, example) tuples yield index, { "style": row["Style"], "artwork": row["Artwork"], "image": image_path }