Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
norabelrose commited on
Commit
cf7e0da
·
1 Parent(s): 4e788ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -1
README.md CHANGED
@@ -36,4 +36,79 @@ dataset_info:
36
  ---
37
  # Dataset Card for "CEBaB"
38
 
39
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ---
37
  # Dataset Card for "CEBaB"
38
 
39
+ This is a lightly cleaned and simplified version of the CEBaB counterfactual restaurant review dataset from [this paper](https://arxiv.org/abs/2205.14140).
40
+ The most important difference from the original dataset is that the `rating` column corresponds to the _median_ rating provided by the Mechanical Turkers,
41
+ rather than the majority rating. These are the same whenever a majority rating exists, but when there is no majority rating (e.g. because there were two 1s,
42
+ two 2s, and one 3), the original dataset used a `"no majority"` placeholder whereas we are able to provide an aggregate rating for all reviews.
43
+
44
+ The exact code used to process the original dataset is provided below:
45
+ ```py
46
+ from ast import literal_eval
47
+ from datasets import DatasetDict, Value, load_dataset
48
+
49
+
50
+ def compute_median(x: str):
51
+ """Compute the median rating given a multiset of ratings."""
52
+ # Decode the dictionary from string format
53
+ dist = literal_eval(x)
54
+
55
+ # Should be a dictionary whose keys are string-encoded integer ratings
56
+ # and whose values are the number of times that the rating was observed
57
+ assert isinstance(dist, dict)
58
+ assert sum(dist.values()) % 2 == 1, "Number of ratings should be odd"
59
+
60
+ ratings = []
61
+ for rating, count in dist.items():
62
+ ratings.extend([int(rating)] * count)
63
+
64
+ ratings.sort()
65
+ return ratings[len(ratings) // 2]
66
+
67
+
68
+ cebab = load_dataset('CEBaB/CEBaB')
69
+ assert isinstance(cebab, DatasetDict)
70
+
71
+ # Remove redundant splits
72
+ cebab['train'] = cebab.pop('train_inclusive')
73
+ del cebab['train_exclusive']
74
+ del cebab['train_observational']
75
+
76
+ cebab = cebab.cast_column(
77
+ 'original_id', Value('int32')
78
+ ).map(
79
+ lambda x: {
80
+ # New column with inverted label for counterfactuals
81
+ 'counterfactual': not x['is_original'],
82
+ # Reduce the rating multiset into a single median rating
83
+ 'rating': compute_median(x['review_label_distribution'])
84
+ }
85
+ ).map(
86
+ # Replace the empty string and 'None' with Apache Arrow nulls
87
+ lambda x: {
88
+ k: v if v not in ('', 'no majority', 'None') else None
89
+ for k, v in x.items()
90
+ }
91
+ )
92
+
93
+ # Sanity check that all the splits have the same columns
94
+ cols = next(iter(cebab.values())).column_names
95
+ assert all(split.column_names == cols for split in cebab.values())
96
+
97
+ # Clean up the names a bit
98
+ cebab = cebab.rename_columns({
99
+ col: col.removesuffix('_majority').removesuffix('_aspect')
100
+ for col in cols if col.endswith('_majority')
101
+ }).rename_column(
102
+ 'description', 'text'
103
+ )
104
+
105
+ # Drop the unimportant columns
106
+ cebab = cebab.remove_columns([
107
+ col for col in cols if col.endswith('_distribution') or col.endswith('_workers')
108
+ ] + [
109
+ 'edit_id', 'edit_worker', 'id', 'is_original', 'opentable_metadata', 'review'
110
+ ]).sort([
111
+ # Make sure counterfactual reviews come immediately after each original review
112
+ 'original_id', 'counterfactual'
113
+ ])
114
+ ```