baber commited on
Commit
593a443
1 Parent(s): 20ef24f

Delete headqa.py

Browse files
Files changed (1) hide show
  1. headqa.py +0 -165
headqa.py DELETED
@@ -1,165 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # NOTE: This is an exact copy of
16
- # https://github.com/huggingface/datasets/blob/3804442bb7cfcb9d52044d92688115cfdc69c2da/datasets/head_qa/head_qa.py
17
- # with the exception of the `image` feature. This is to avoid adding `Pillow`
18
- # as a dependency.
19
- """HEAD-QA: A Healthcare Dataset for Complex Reasoning."""
20
-
21
-
22
- import json
23
- import os
24
-
25
- import datasets
26
-
27
-
28
- _CITATION = """\
29
- @inproceedings{vilares-gomez-rodriguez-2019-head,
30
- title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning",
31
- author = "Vilares, David and
32
- G{\'o}mez-Rodr{\'i}guez, Carlos",
33
- booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
34
- month = jul,
35
- year = "2019",
36
- address = "Florence, Italy",
37
- publisher = "Association for Computational Linguistics",
38
- url = "https://www.aclweb.org/anthology/P19-1092",
39
- doi = "10.18653/v1/P19-1092",
40
- pages = "960--966",
41
- abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.",
42
- }
43
- """
44
-
45
- _DESCRIPTION = """\
46
- HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the
47
- Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio
48
- de Sanidad, Consumo y Bienestar Social.
49
- The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology.
50
- """
51
-
52
- _HOMEPAGE = "https://aghie.github.io/head-qa/"
53
-
54
- # The Spanish data comes from the "Ministerio de Sanidad, Consumo y Bienestar Social", as indicated here : https://github.com/aghie/head-qa
55
- # This Spanish data seems to follow the intellectual property rights stated here : https://www.sanidad.gob.es/avisoLegal/home.htm
56
- # The English data was translated by the authors of head-qa (https://arxiv.org/pdf/1906.04701.pdf).
57
- _LICENSE = "Custom license"
58
-
59
- _URL = "https://drive.google.com/uc?export=download&confirm=t&id=1a_95N5zQQoUCq8IBNVZgziHbeM-QxG2t"
60
-
61
- _DIRS = {"es": "HEAD", "en": "HEAD_EN"}
62
-
63
-
64
- class HeadQA(datasets.GeneratorBasedBuilder):
65
- """HEAD-QA: A Healthcare Dataset for Complex Reasoning"""
66
-
67
- VERSION = datasets.Version("1.1.0")
68
-
69
- BUILDER_CONFIGS = [
70
- datasets.BuilderConfig(
71
- name="es", version=VERSION, description="Spanish HEAD dataset"
72
- ),
73
- datasets.BuilderConfig(
74
- name="en", version=VERSION, description="English HEAD dataset"
75
- ),
76
- ]
77
-
78
- DEFAULT_CONFIG_NAME = "es"
79
-
80
- def _info(self):
81
- return datasets.DatasetInfo(
82
- description=_DESCRIPTION,
83
- features=datasets.Features(
84
- {
85
- "name": datasets.Value("string"),
86
- "year": datasets.Value("string"),
87
- "category": datasets.Value("string"),
88
- "qid": datasets.Value("int32"),
89
- "qtext": datasets.Value("string"),
90
- "ra": datasets.Value("int32"),
91
- "answers": [
92
- {
93
- "aid": datasets.Value("int32"),
94
- "atext": datasets.Value("string"),
95
- }
96
- ],
97
- }
98
- ),
99
- supervised_keys=None,
100
- homepage=_HOMEPAGE,
101
- license=_LICENSE,
102
- citation=_CITATION,
103
- )
104
-
105
- def _split_generators(self, dl_manager):
106
- """Returns SplitGenerators."""
107
- data_dir = dl_manager.download_and_extract(_URL)
108
-
109
- dir = _DIRS[self.config.name]
110
- data_lang_dir = os.path.join(data_dir, dir)
111
-
112
- return [
113
- datasets.SplitGenerator(
114
- name=datasets.Split.TRAIN,
115
- gen_kwargs={
116
- "data_dir": data_dir,
117
- "filepath": os.path.join(data_lang_dir, f"train_{dir}.json"),
118
- },
119
- ),
120
- datasets.SplitGenerator(
121
- name=datasets.Split.TEST,
122
- gen_kwargs={
123
- "data_dir": data_dir,
124
- "filepath": os.path.join(data_lang_dir, f"test_{dir}.json"),
125
- },
126
- ),
127
- datasets.SplitGenerator(
128
- name=datasets.Split.VALIDATION,
129
- gen_kwargs={
130
- "data_dir": data_dir,
131
- "filepath": os.path.join(data_lang_dir, f"dev_{dir}.json"),
132
- },
133
- ),
134
- ]
135
-
136
- def _generate_examples(self, data_dir, filepath):
137
- """Yields examples."""
138
- with open(filepath, encoding="utf-8") as f:
139
- head_qa = json.load(f)
140
- for exam_id, exam in enumerate(head_qa["exams"]):
141
- content = head_qa["exams"][exam]
142
- name = content["name"].strip()
143
- year = content["year"].strip()
144
- category = content["category"].strip()
145
- for question in content["data"]:
146
- qid = int(question["qid"].strip())
147
- qtext = question["qtext"].strip()
148
- ra = int(question["ra"].strip())
149
-
150
- aids = [answer["aid"] for answer in question["answers"]]
151
- atexts = [answer["atext"].strip() for answer in question["answers"]]
152
- answers = [
153
- {"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)
154
- ]
155
-
156
- id_ = f"{exam_id}_{qid}"
157
- yield id_, {
158
- "name": name,
159
- "year": year,
160
- "category": category,
161
- "qid": qid,
162
- "qtext": qtext,
163
- "ra": ra,
164
- "answers": answers,
165
- }