Datasets:

Languages:
English
ArXiv:
Tags:
math
File size: 5,652 Bytes
e6cbf7f
 
 
 
 
 
 
 
 
607f6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac8dab6
 
 
54efebd
ac8dab6
09e5dac
ac8dab6
1b88a1d
ac8dab6
 
 
 
 
152fd61
ac8dab6
 
 
 
 
 
 
 
 
152fd61
ac8dab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e733a20
003be52
ac8dab6
 
 
 
 
54efebd
 
 
 
 
 
 
ac8dab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
task_categories:
- text-generation
language:
- en
tags:
- math
size_categories:
- 10B<n<100B
configs:
- config_name: arxiv
  data_files:
  - split: train
    path: arxiv/train/*.jsonl.zst
  - split: validation
    path: arxiv/validation/*.jsonl.zst
  - split: test
    path: arxiv/test/*.jsonl.zst
- config_name: open-web-math
  data_files:
  - split: train
    path: open-web-math/train/*.jsonl.zst
  - split: validation
    path: open-web-math/validation/*.jsonl.zst
  - split: test
    path: open-web-math/test/*.jsonl.zst
- config_name: algebraic-stack
  data_files:
  - split: train
    path: algebraic-stack/train/*.jsonl.zst
  - split: validation
    path: algebraic-stack/validation/*.jsonl.zst
  - split: test
    path: algebraic-stack/test/*.jsonl.zst
---
<img src="proofpile_logo.jpg" width="500">

[ArXiv](http://arxiv.org/abs/2310.10631) | [Models](https://huggingface.co/EleutherAI/llemma_34b) | [Data](https://huggingface.co/datasets/EleutherAI/proof-pile-2) | [Code](https://github.com/EleutherAI/math-lm) | [Blog](https://blog.eleuther.ai/llemma/) | [Sample Explorer](https://llemma-demo.github.io/)

[Zhangir Azerbayev](https://zhangir-azerbayev.github.io/), [Hailey Schoelkopf](https://github.com/haileyschoelkopf), [Keiran Paster](https://keirp.com), [Marco Dos Santos](https://github.com/dsantosmarco), [Stephen McAleer](https://www.andrew.cmu.edu/user/smcaleer/), [Albert Q. Jiang](https://albertqjiang.github.io/), [Jia Deng](https://www.cs.princeton.edu/~jiadeng/), [Stella Biderman](https://www.stellabiderman.com/), [Sean Welleck](https://wellecks.com/)

The **Proof-Pile-2** is a 55 billion token dataset of mathematical and scientific documents. This dataset was created in order to train the [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b) and [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b) models. It consists of three subsets:
- `arxiv` (29B tokens): the ArXiv subset of [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
- `open-web-math` (15B tokens): The [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) dataset, which contains much of the high-quality mathematical text from the internet.
- `algebraic-stack` (11B tokens): A new dataset of mathematical code, including numerical computing, computer algebra, and formal mathematics.

You can download the dataset as follows
```python
from datasets import load_dataset
ds = load_dataset("EleuetherAI/proof-pile-2")

# To load only a specific subset, pass it as an argument, e.g
ds_arxiv = load_dataset("EleutherAI/proof-pile-2", "arxiv")
```

### Schema
Each dataset row has the following structure
```python
{
  "text": ..., # document text
  "meta": ..., # JSON string of metadata, schema specific to data source
}
```

### Dataset Contents
For detailed documentation of the ArXiv and web subsets, refer to [RedPajama](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) and [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math). The following table enumerates the contents of the AlgebraicStack by programming language. The AlgebraicStack is filtered to only include documents that contain mathematics, as judged by hand-crafted, language-specific heuristics.

| Language  | AlgebraicStack tokens |
|-----------|-----------------------|
| Agda      | 35.2 M                |
| C         | 25.1 M                |
| C++       | 954.1 M               |
| Coq       | 281.9 M               |
| Fortran   | 724.9 M               |
| GAP       | 3.6 M                 |
| Haskell   | 9.1 M                 |
| Idris     | 10.9 M                |
| Isabelle  | 1,089.7 M             |
| Julia     | 531.0 M               |
| Jupyter   | 199.1 M               |
| Lean      | 285.6 M               |
| Maple     | 2.0 M                 |
| Matlab    | 65.8 M                |
| Python    | 6,098.8 M             |
| R         | 71.3 M                |
| Tex       | 567.7 M               |
| **Total** | **10,955.7 M**        |

### License
We do not alter the license of any of the underlying data.

### Version History
**v1.1.0**: Contains an updated version of OpenWebMath, precisely the one available at [open-web-math/open-web-math](https://huggingface.co/datasets/open-web-math/open-web-math). This version of OpenWebMath has slightly improved filtering, for example, removal of very short documents.

**v1.0.0**: The data used to train the [Llemma 7B](https://huggingface.co/EleutherAI/llemma_7b) and [Llemma 34B](https://huggingface.co/EleutherAI/llemma_34b). Uses a development version of OpenWebMath.

### Citation 
For the entire Proof-Pile-2, cite
```
@misc{azerbayev2023llemma,
      title={Llemma: An Open Language Model For Mathematics}, 
      author={Zhangir Azerbayev and Hailey Schoelkopf and Keiran Paster and Marco Dos Santos and Stephen McAleer and Albert Q. Jiang and Jia Deng and Stella Biderman and Sean Welleck},
      year={2023},
      eprint={2310.10631},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
For the ArXiv subset, cite
```
@software{together2023redpajama,
  author = {Together Computer},
  title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset},
  month = April,
  year = 2023,
  url = {https://github.com/togethercomputer/RedPajama-Data}
}
```
For OpenWebMath, cite
```
@misc{paster2023openwebmath,
      title={OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text}, 
      author={Keiran Paster and Marco Dos Santos and Zhangir Azerbayev and Jimmy Ba},
      year={2023},
      eprint={2310.06786},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```