File size: 5,454 Bytes
96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 f8bad0d 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 96ced71 e7709f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import json
import os
import zstandard as zstd
import datasets
_CITATION="""\
@article{azerbayev2023llemma,
title={Llemma: an open language model for mathematics},
author={Zhangir Azerbayev and Hailey Schoelkopf and Keiran Paster and Marco Dos Santos and Stephen McAleer and Albert Q. Jiang and Jia Deng and Stella Biderman and Sean Welleck},
eprint={xyz.xyz},
archivePrefix={arXiv}
year={2023}
}
"""
_DESCRIPTION = """\
A dataset of high quality mathematical text. """
_HOMEPAGE = "https://github.com/EleutherAI/math-lm"
SPLITS = ["train", "validation", "test"]
_DATA_PATHS = {
"arxiv": {
split: [f'arxiv/{split}/arXiv_{str(i).zfill(3)}.jsonl.zst' for i in range(100)]
for split in SPLITS
},
"open-web-math": {
split: [
os.path.join(f"open-web-math/{split}", filename)
for filename in os.listdir(f"open-web-math/{split}")
]
for split in SPLITS
},
"algebraic-stack": {
split: [
os.path.join(f"algebraic-stack/{split}", filename)
for filename in os.listdir(f"algebraic-stack/{split}")
]
for split in SPLITS
}
}
class ProofPile2Config(datasets.BuilderConfig):
"""BuilderConfig for RedPajama sample."""
def __init__(self, *args, subsets, **kwargs):
"""BuilderConfig for ProofPile2.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ProofPile2Config, self).__init__(**kwargs)
self.subsets = subsets
class ProofPile2(datasets.GeneratorBasedBuilder):
"""A large dataset of mathematical text."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from ProofPile2Config
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
ProofPile2Config(
name='default',
subsets=list(_DATA_PATHS.keys()),
version=VERSION,
description="All subsets"
),
ProofPile2Config(
name='arxiv',
subsets=["arxiv"],
version=VERSION,
description="ArXiv subset"
),
ProofPile2Config(
name='open-web-math',
subsets=['open-web-math'],
version=VERSION,
description="OpenWebMath"
),
ProofPile2Config(
name='algebraic-stack',
subsets=['algebraic-stack'],
version=VERSION,
description="Code subset"
),
]
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"meta": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"data_files": list(map(
dl_manager.download,
[x for subset in self.config.subsets for x in _DATA_PATHS[subset]["train"]]
)),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"data_files": list(map(
dl_manager.download,
[x for subset in self.config.subsets for x in _DATA_PATHS[subset]["validation"]]
)),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_files": list(map(
dl_manager.download,
[x for subset in self.config.subsets for x in _DATA_PATHS[subset]["test"]]
)),
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, data_files):
key = 0
for name in data_files:
with zstd.open(open(name, "rb"), "rt", encoding="utf-8") as f:
for x in f.readlines():
instance = json.loads(x)
if instance:
if "meta" not in instance:
instance["meta"] = dict()
yield key, {"text": instance["text"], "meta": json.dumps(instance["meta"])}
key += 1
|