File size: 6,415 Bytes
a27a700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e2266
a27a700
 
f2e2266
 
a27a700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2bc413
a27a700
f2e2266
a27a700
11cc927
 
 
a27a700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11cc927
0497e1e
a27a700
f2e2266
a27a700
11cc927
a27a700
a7464f1
 
a27a700
 
 
 
 
 
 
 
 
c5f4205
a27a700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11cc927
a27a700
 
 
7a6e38c
ee95f1e
a27a700
 
11cc927
a27a700
 
 
 
11cc927
a27a700
 
 
 
9a39598
4d81832
a27a700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74d4e24
 
a27a700
 
 
 
f2e2266
 
 
a27a700
8458c7e
 
 
a27a700
 
 
 
ee549b9
a27a700
 
 
 
 
 
c5f4205
a27a700
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Elite Voice Project"""

import csv
import os
import json

import datasets
from datasets.utils.py_utils import size_str
from tqdm import tqdm

_CITATION = """\
@InProceedings{elitevoiceproject:dataset,
    title = {Elite Voice Project},
    author={Elite35P Server.},
    year={2022}
}
"""

_HOMEPAGE = "https://nyahello.jp/"

_LICENSE = "https://hololive.hololivepro.com/guidelines/"

_BASE_URL = "https://huggingface.co/datasets/Elite35P-Server/EliteVoiceProject/resolve/main/"

_AUDIO_URL = _BASE_URL + "audio/{platform}/{split}/{platform}_{split}_{version}.tar.gz"

_TRANSCRIPT_URL = _BASE_URL + "transcript/{platform}/{split}/{platform}_{split}_{version}.csv"

_PLATFORMS = ["twitter"]
#_PLATFORMS = ["twitter", "youtube", "twitch"]


class EliteVoiceProjectConfig(datasets.BuilderConfig):
    """BuilderConfig for EliteVoiceProject."""

    def __init__(self, name, version, **kwargs):
        self.language = kwargs.pop("language", None)
        self.release_date = kwargs.pop("release_date", None)
        description = (
            f"Elite Voice Project speech to text dataset in {self.language} released on {self.release_date}. "
        )
        super(EliteVoiceProjectConfig, self).__init__(
            name=name,
            version=datasets.Version(version),
            description=description,
            **kwargs,
        )


class EliteVoiceProject(datasets.GeneratorBasedBuilder):
    DEFAULT_WRITER_BATCH_SIZE = 1000

    BUILDER_CONFIGS = [
        EliteVoiceProjectConfig(
            name=platform,
            version='0.0.2',
            language='Japanese',
            release_date='2022-12-08',
        )
        for platform in _PLATFORMS
    ]
    
    DEFAULT_CONFIG_NAME = "twitter"

    def _info(self):
        description = (
            "Elite Voice Project はホロライブ所属VTuberのさくらみこ氏の声をデータセット化することを目的に"
            "TwitterのSpace配信等のアーカイブから音声を切り出し、センテンスを当てています。"
            "当データセットは、hololive productionの二次創作ガイドラインに沿ってご利用ください。"
        )
        features = datasets.Features(
            {
                "path": datasets.Value("string"),
                "audio": datasets.features.Audio(sampling_rate=48_000),
                "sentence": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            description=description,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            version=self.config.version,
        )

    def _split_generators(self, dl_manager):
        platform = self.config.name
        version = self.config.version
        
        audio_urls = {}
        splits = ("train", "test")
        #splits = ["train"]
        for split in splits:
            audio_urls[split] = [
                _AUDIO_URL.format(platform=platform, split=split, version=version)
            ]
        archive_paths = dl_manager.download(audio_urls)
        local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}

        meta_urls = {split: _TRANSCRIPT_URL.format(platform=platform, split=split, version=version) for split in splits}
        meta_paths = dl_manager.download_and_extract(meta_urls)

        split_generators = []
        split_names = {
            "train": datasets.Split.TRAIN,
            "test": datasets.Split.TEST,
        }
        for split in splits:
            split_generators.append(
                datasets.SplitGenerator(
                    name=split_names.get(split, split),
                    gen_kwargs={
                        "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
                        "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
                        "meta_path": meta_paths[split],
                    },
                ),
            )

        return split_generators

    def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
        data_fields = list(self._info().features.keys())
        metadata = {}
        with open(meta_path, 'rt', newline='', encoding='utf-8') as csvfile:
            reader = csv.DictReader(csvfile)
            for row in tqdm(reader, desc="Reading metadata..."):
                if not row["path"].endswith(".mp3"):
                    row["path"] += ".mp3"
                # accent -> accents in CV 8.0
                #if "accents" in row:
                #    row["accent"] = row["accents"]
                #    del row["accents"]
                # if data is incomplete, fill with empty values
                for field in data_fields:
                    if field not in row:
                        row[field] = ""
                metadata[row["path"]] = row

        for i, audio_archive in enumerate(archives):
            for filename, file in audio_archive:
                _, filename = os.path.split(filename)
                if filename in metadata:
                    result = dict(metadata[filename])
                    # set the audio feature and the path to the extracted file
                    path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename
                    result["audio"] = {"path": path, "bytes": file.read()}
                    # set path to None if the audio file doesn't exist locally (i.e. in streaming mode)
                    result["path"] = path if local_extracted_archive_paths else filename

                    yield path, result